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Abstract. Let R(Cn) be the Ramsey number of the cycle on n vertices. We prove that,
for some C > 0, with high probability every 2-colouring of the edges of G(N, p) has a
monochromatic copy of Cn, as long as N ≥ R(Cn)+C/p and p ≥ C/n. This is sharp up to
the value of C and it improves results of Letzter and of Krivelevich, Kronenberg and Mond.

1. Introduction

The Ramsey number of a graph H, denoted by R(H), is the minimum number N so that
every 2-colouring of the edges of the complete graph on N vertices yields a monochromatic
copy of H. Here, we focus in the case where H is an n-vertex cycle Cn, in which case it
holds [BE73; Ros73; FS74] that R(C3) = R(C4) = 6, and

R(Cn) =

{
2n− 1 if n ≥ 5 is odd,
3n/2− 1 if n ≥ 6 is even.

A way to extend this further is to find monochromatic copies of H in 2-edge-coloured host
graphs on R(H) vertices which are not complete. Here, we investigate random host graphs.

The binomial random graph G(n, p) has n vertices and each edge appears independently
with probability p = p(n). A sequence of events indexed by n happens with high probability
(abbreviated w.h.p.) if the probability of those events tends to 1 whenever n tends to infinity.
For graphs G and H, we say that G is H-Ramsey, denoted by G→ H, if every 2-colouring of
the edges of G yields a monochromatic copy of H. Here, the relevant question is, for which
values of p, and N “close” to R(Cn), does it hold that G(N, p)→ Cn w.h.p.?

Recently, Krivelevich, Kronenberg, and Mond [KKM19] obtained Ramsey-type results for
cycles in 2-edge-colourings of random graphs (extending analogous results of Letzter [Let16]
for paths). Their results for odd and even cycles can be compactly stated as follows: for
every ε > 0, there exists C > 0 such that if p ≥ C/n, then w.h.p. G(R(Cn) + εn, p)→ Cn.

Those results consider random graphs on R(Cn) + εn vertices, instead of just R(Cn). The
case p = Θ(1/n) shows that the extra εn vertices are necessary (we will say more about this
later). But what can we say for other values of p? Balogh et al. [Bal+22] showed that for
any large even n, every graph G on N = R(Cn) vertices with δ(G) ≥ 3N/4 is Cn-Ramsey.
Thus, for constant p > 3/4, we see that w.h.p. G(R(Cn), p)→ Cn, so here no extra vertices
are necessary. In a similar fashion, a recent result of Łuczak, Polcyn and Rahimi [ŁPR22]
implies that for odd n and constant p > 1/2, G(R(Cn), p)→ Cn.

Our main result bridges the gap between these two extreme situations (p = Θ(1/n) and
p = Θ(1)), obtaining the essentially best-possible Ramsey-type result for cycles in random
host graphs, and every possible value of p.

Theorem 1.1. There exist positive constants c and C such that w.h.p.
(i) G(N, p)→ Cn if N ≥ R(Cn) + C/p and p ≥ C/n,
(ii) G(N, p) 9 Cn if N ≤ R(Cn) + c/p and p ≤ c, or if p ≤ c/n.
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We can show part (ii) right away. Note this means that part (i) is best-possible up to the
specific values of c and C.

Proof of Theorem 1.1(ii). For p = c/n with c < 1, it is well-known that the size of largest
connected component of G(n, p) is O(log n), and thus G(n, p) has no cycle on Ω(n) vertices.
Thus we can assume from now on that c/n ≤ p ≤ c.

Suppose then that N ≤ R(Cn) + c/p and c/n ≤ p ≤ c. Note that the expected number of
vertices adjacent to a set of size c/p + 2 is at most p(c/p + 2) ≤ 3cn. Using this, it can be
checked that w.h.p. there exists a set X of size c/p+2 such that the size of the neighbourhood
of X is at most 3cn < n/2.

We consider first the case where n is odd. In this case, R(Cn) = 2n− 1. Let G = G(N, p),
where N = 2n + c/p. We partition V (G) = V1 ∪ V2 ∪X so that |X| = c/p + 2, N(X) ⊂ V1

and |V1| = |V2| = n− 1 (this is possible since |N(X)| ≤ 3cn ≤ n/2− 1). We colour the edges
of G in such a way all edges inside V1, V2 and X are red, and all remaining edges are blue.
This colouring cannot contain a monochromatic cycle of length n as the blue components are
bipartite, and every red component has at most n− 1 vertices.

Now we consider even n. If n is even, then N = R(Cn) + c/p = 3n/2 + c/p. We partition
V (G) = V1 ∪ V2 ∪ X so that |V1| = n − 1, |V2| = n/2 − 1, |X| = c/p + 2 and N(X) ⊂ V2

(again, this is possible since |N(X)| ≤ n/2 − 1). We colour all edges inside V1 with red, all
edges between V1 ∪X and V2 in blue, all edges inside X in red, and use any colour for the
edges inside V2. No red cycle of length n can exist as the red components have size at most
n − 1, and there is no blue cycle on n vertices in G as otherwise that should use at least
n/2 > |V2| vertices from V2. �

1.1. Proof sketch. Our proof of Theorem 1.1(i) proceeds in three steps. Suppose that n is
given, N = R(Cn) +C/p, and we have a red-blue edge-colouring of G = G(N, p) without any
monochromatic n-cycle.

(i) Step 1: Coarse stability. We show first that the edge-colouring of G must in fact
follow closely a global pattern, which essentially resembles the colourings of cliques
on R(Cn)− 1 vertices without any monochromatic Cn. Up to renaming the colours,
the structure can be described as follows. We find a partition of V (G) into two sets,
V1, V2, such that the edges between V1 and V2 are almost all blue, and almost all
edges inside V1 are red. If n is odd, then we also know that |V1|, |V2| are very close
to n and that almost edges inside V2 are red; if n is even, then we know instead that
|V1| and 2|V2| are close to n.

(ii) Step 2: Fine stability. Here, we refine the structure found in the first step. By
reallocating vertices carefully, we will transform the partition V1, V2 to a partition of
V (G) into three sets, V ′1 , V ′2 ,W . Here, V ′1 , V ′2 behave similarly in terms of the colouring
to V1, V2, but now we can also ensure that every vertex in V ′1 ∪ V ′2 is adjacent to at
least pn/100 of degree of the ‘correct colour’ into each cluster (e.g. each vertex in V ′1
has pn/100 blue neighbours in V ′2 and pn/100 red neighbours in V ′1). Moreover, and
crucially, we can also ensure that W is very small, of size at most C/p.

(iii) Step 3: Cycle finding. Here, and depending on the relative sizes of V ′1 and V ′2 , we will
find the cycles inside one of the monochromatic subgraphs induced by V ′1 , by V ′2 , or
in the bipartite subgraph induced by V ′1 and V ′2 . For instance, if V ′1 has size at least
n, we will find a red monochromatic cycle of length n inside G[V ′1 ]. Since |W | ≤ C/p,
there will always be one choice that works, and we can finish the proof.

For the proof of Step 1, we will use the technique of (multicoloured) sparse regularity, com-
bined with known stability results for cycle-free colourings in almost complete graphs. Similar
techniques were used by Letzer [Let16] and Krivelevich, Kronenberg and Mond [KKM19] to
find long cycles and paths in edge-coloured random graphs. In fact this first step is enough
if we were interested in finding monochromatic cycles or paths of length (1− o(1))n instead;
the next two steps are crucial to improve this to length exactly n.
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For the proof of Step 2, we refine the structure found in Step 1 in a vertex-by-vertex
fashion, and we use tree embeddings in expanders and bipartite expanders as a main tool.

For the proof of Step 3, we use the rotation-extension technique in the monochromatic
subgraphs induced by G[V ′1 ] and G[V ′2 ]. Here we rely heavily on the expansion properties of
subgraphs of random graphs which also have minimum degree conditions. We also need to
tailor this method to work in bipartite expander subgraphs.

1.2. Organisation. The paper is organised as follows. In Section 2 we fix notation and then
gather known results about expansion, random graphs, and sparse regularity. In Section 3
we prove our ‘coarse stability’ result (Theorem 3.2), which corresponds to the Step 1 in the
sketch above. In the next two sections we provide the tools to proceed with the ‘cycle finding’
of Step 3, the main result here is the Cycle finder lemma (Lemma 5.1). In Section 4 we use
the rotation-extension method in expanders; in Section 5 we argue that the monochromatic
subgraphs of random graphs are indeed expanders. Finally, the pieces to prove Theorem 1.1
are put together in Section 6. Some lemmas about tree embeddings in bipartite expanders
are defered to Appendix A.

2. Preliminaries

Our notation is standard. Given a graph G, we write V (G) and E(G) for its vertex set
and edge set, respectively. We denote by |G| = |V (G)| its number of vertices and write
e(G) = |E(G)| for its number of edges. For a subset U ⊂ V (G), G[U ] is the graph induced
on U . Given subsets A,B ⊂ V (G), we write e(A,B) for the number of edges e = uv with
u ∈ A and v ∈ B, and set e(A) = e(G[A]). Given a vertex v ∈ V (G), the neighbourhood of v
is denoted by N(v) and its degree is d(v) = |N(v)|. The maximum degree of G is denoted by
∆(G), and the minimum degree by δ(G). For a subset U ⊂ V (G), we write N(v, U) for the
set of neighbours of v in U . The set of neighbours of U ⊂ V (G) is Γ(U) =

⋃
u∈U N(u) and

its external neighbourhood is N(U) =
⋃
u∈U N(u) \ U . Furthermore, we write N(U,W ) =

N(U) ∩W . When working with more than one graph, we indicate the graph considered in
the subscript in order to avoid confusion, for example eG(A,B) indicates the number of edges
between A and B in G.

2.1. Expansion. Informally speaking, a graph G is an expander if every sufficiently small
set of vertices U ⊂ V (G) expands outside U , that is, has many neighbours outside U .

Definition 2.1 (Expander graph). Let G be a graph, let m,m′ ∈ N, and let d > 0.
(i) G is an (m, d)-expander if for every S ⊂ V (G) with |S| ≤ m, we have |N(S)| ≥ d|S|.
(ii) G is (m,m′)-joined if every pair of disjoint sets A,B ⊂ V (G), with |A| = m and
|B| = m′, have an edge between them. If m = m′, then we say that G is m-joined.

The following easy lemma shows that we can get improved expander parameters in a graph
which is both an expander and joined.

Lemma 2.2. Let M , m, n satisfy m ≤M . Suppose G is an n-vertex graph which is (m,M)-
joined. Then, for each X ⊆ V (G) with |X| ≥ m, |N(X)| ≥ n−M + 1−|X|. In particular, if
G is also a (k, d)-expander and k+1 ≥ m, then G is also a ((n−M+1)/(d+1), d)-expander.

Proof. Let X be a subset of size at least m, and let X ′ ⊆ X have size exactly m. If
|N(X)| ≤ n−M − |X|, then there exists a set Y ⊆ V (G) \ (N(X) ∪X) of size at least M ,
which means there are no edges between X ′ and Y and contradicts that G is (m,M)-joined.

Now suppose G is in addition (k, d)-expander and k + 1 ≥ m. To show that G is a
((n −M)/(d + 1), d)-expander, let X ⊆ V (G) with 1 ≤ |X| ≤ (n −M)/(d + 1), we need to
show that |N(X)| ≥ d|X|. If |X| ≤ k this follows since G is a (k, d)-expander. Otherwise,
we have |X| ≥ k + 1 ≥ m, so |N(X)| ≥ n−M + 1− |X| ≥ d|X|, as required. �

The following lemma says that we can remove a few vertices from an expander graph so
that it remains expander.
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Lemma 2.3. Let d ≥ 2 and let G be a (2k − 2, d)-expander. For any 0 ≤ r ≤ k, there exists
a set X ⊆ V (G) of size r such that G−X is a (2k − 2, d− 1)-expander.
Proof. For d ≥ 3, this can be seen to be true by inspecting the proof of [FP87, Theorem 1]
while embedding an r-vertex path. For completeness, we give a proof following that outline.

We use induction on r. If r = 0 this is trivial, and if r = 1 then it is easy to see we can
select an arbitrary vertex as X. So suppose 0 < r ≤ k − 1 and that there exists X a set of
size r such that G−X is a (2k − 2, d− 1)-expander, we shall prove the statement for r + 1.

Say a set Y ⊆ G − X is critical if |Y | ≤ 2k − 2 and |NG−X(Y )| = (d − 1)|Y |. Note
that a critical set can have size at most k − 1. Indeed, since G is a (2k − 2, d)-expander,
then (d − 1)|Y | = |NG−X(Y )| ≥ |NG(Y )| − |X| ≥ d|Y | − |X| ≥ d|Y | − k + 1, and the
bound follows. On the other hand, the union of critical sets is again critical. Indeed, if
X,Y are critical, then they have size at most k − 1 each and thus |X ∪ Y | ≤ 2k − 2, and
since G − X is a (2k − 2, d − 1)-expander we have (d − 1)|X ∩ Y | ≤ |NG−X(X ∩ Y )| and
also (d − 1)|X ∪ Y | ≤ |NG−X(X ∪ Y )| ≤ |NG−X(X)| + |NG−X(Y )| − |NG−X(X ∩ Y )| ≤
(d− 1)(|X|+ |Y | − |X ∩ Y |) = (d− 1)|X ∪ Y |, thus indeed X ∪ Y is critical.

If for some v ∈ V (G)−X we have G−X − v is a (2k− 2, d− 1)-expander we are done. So
we can assume that for every v ∈ V (G)−X there exists a set Yv ⊆ V (G)−X − v of size at
most 2k−2 such that |NG−X−v(Yv)| < (d−1)|Yv|. Since G−X is a (2k−2, d−1)-expander,
it must hold that |NG−X(Yv)| = (d− 1)|Yv| and v ∈ NG−X(Yv). Therefore each Yv is critical,
and therefore |Yv| ≤ k − 1 for each v ∈ V (G) − X, and also Y ∗ =

⋃
v∈V (G)−X Yv is again

a critical set, and therefore |NG−X(Y ∗)| = (d − 1)|Y ∗|. But, since v ∈ NG−X(Yv) for each
v ∈ V (G)−X, we deduce V (G)−X−Y ∗ ⊆ NG−X(Y ∗). Using that G is a (2k−2, d)-expander
and |X ∪ Y ∗| ≤ 2k− 2, we have d|Y ∗| ≤ d|Y ∗ ∪X| ≤ |NG(X ∪ Y ∗)| ≤ |V (G)| − |X| − |Y ∗| =
|NG−X(Y ∗)| = (d− 1)|Y ∗|, a contradiction. �

The following lemma is similar in spirit to Haxell’s tree embedding result [Hax01] and can
be found in [Mon19, Corollary 3.7].
Lemma 2.4. Let n,m, d ∈ N satisfy d ≥ 4. Let G be a (2m, d)-expander graph on n
vertices which is also m-joined. Let T be a tree with maximum degree at most d/2 such that
|T | ≤ n− (2d+ 3)m. Then, for every vertex t ∈ V (T ) and v ∈ V (G), there exists a copy of
T into G such that t is mapped into v.
2.2. Bipartite expansion. It is also possible, and useful, to define an expansion-like prop-
erty in bipartite graphs.
Definition 2.5 (Bipartite expander graph). Let G be a bipartite graph with parts V1, V2.
Let m ∈ N, and let d > 0.

(i) G is an (m, d)-bipartite-expander if for each i ∈ {1, 2}, and for every S ⊂ Vi with
|S| ≤ m, we have |N(S)| ≥ d|S|.

(ii) G is m-bipartite-joined if for every pair sets A ⊆ V1, B ⊂ V2, with |A| = |B| = m, we
have e(A,B) > 0.

The following is a bipartite version of Lemma 2.3.
Lemma 2.6. Let d ≥ 3 and let G be a bipartite graph on classes V1, V2 which is a (2k, 2d+5)-
bipartite-expander. For any 0 ≤ r ≤ k, there exists a set X ⊆ V2 of size r such that G −X
is a (2k, d)-expander.

The proof of Lemma 2.6 can be done similarly as the proof of Lemma 2.3 after adapting
the concept of expanders and joined to bipartite graphs. The proof is given in Appendix A.2.

2.3. Random graphs. Here we collect properties that with high probability are satisfied by
random graphs.
Definition 2.7. For p, η ∈ (0, 1], we say that a graph G is (η, p)-uniform if for all disjoint
sets A,B ⊂ V (G), with |A|, |B| ≥ η|G|, we have

e(A,B) = (1± η)p|A||B| and e(A) = (1± η)p

(
|A|
2

)
. (2.1)
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Furthermore, if only the upper bounds in (2.1) are known to hold, we say that G is (η, p)-
upper-uniform.

The following three results show that random graphs are typically uniform and joined.
They are all straightforward consequences of Chernoff’s bound.
Lemma 2.8. For every η > 0 there exists a constant C > 0 such that if p ≥ C/N , then
w.h.p. G(N, p) is (η, p)-uniform.
Lemma 2.9. For every γ > 0 and p ∈ (0, 1), w.h.p. G = G(N, p) satisfies the following
property. For every pair of disjoint subsets U,X ⊂ V (G), with |U | ≥ γN and |X| ≥ 50/γp,
the number of edges between U and X satisfies p

2 |U ||X| ≤ e(U,X) ≤ 2p|U ||X|.
Lemma 2.10. The following hold:

(i) There exists a constant C such that if p ≥ C/n, then w.h.p. G(n, p) is (5 log(np)/p)-
joined.

(ii) For every c > 0 there exists C > 0 such that w.h.p. G(n, p) is (C/p, cn)-joined.
2.4. Sparse regularity. Let G be a graph and let p ∈ (0, 1]. For disjoint sets A,B ⊂ V (G),
the p-density dp(A,B) of the pair (A,B) is defined as

dp(A,B) =
e(A,B)

p|A||B|
.

Given ε > 0, we say that the pair (A,B) is (ε, p)-regular (in a graph G) if for all A′ ⊂ A and
B′ ⊂ B, with |A′| ≥ ε|A| and |B′| ≥ ε|B|, we have

e(A′, B′) = (dp(A,B)± ε)p|A′||B′|.
We will use the following standard result about regular pairs.
Lemma 2.11. Let 0 < ε < α. If (A,B) is an (ε, p)-regular pair with p-density d > 0, then
the following hold.

(i) For any A′ ⊂ A and B′ ⊂ B, with |A′| ≥ α|A| and |B′| ≥ α|B|, the pair (A′, B′) is
(ε/α, p)-regular with p-density at least d− ε.

(ii) There are at most ε|A| vertices v ∈ A such that d(v,B) < (d− ε)p|B|.
The Sparse regularity lemma, due to Kohayakawa and Rödl [KR03], states that every

upper-uniform graph admits a partition into clusters where most pairs are regular. We will
use the following ‘colourful’ variant which is well-suited for Ramsey-type problems.
Theorem 2.12 (Colourful sparse regularity lemma). Given ε > 0 and k0 ∈ N, there are
η > 0 and K0 ≥ k0 such that the following holds. For p ∈ (0, 1), let r ≥ 1 and let G1, . . . , Gr
be (η, p)-upper-uniform graphs on a common vertex set V of size n ≥ k0. Then there exists a
partition V = V0 ∪ V1 ∪ · · · ∪ Vk, with k0 ≤ k ≤ K0, such that

(i) |V0| ≤ εn,
(ii) |Vi| = |Vj | for all i, j ∈ [k], and
(iii) all but at most ε

(
k
2

)
pairs (Vi, Vj) are (ε, p)-regular in Gt for each t ∈ [r].

The partition V = V0 ∪ V1 ∪ · · · ∪ Vk given by Theorem 2.12 is called an (ε, p)-regular
partition. Suppose a graph G admits an (ε, p)-regular partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk.
For d ∈ (0, 1], the (ε, p, d)-reduced graph Γ, with respect to this (ε, p)-regular partition, is the
graph with vertex set V (Γ) = {Vi : i ∈ [k]}, called clusters, where ViVj is an edge if and only
if (Vi, Vj) is an (ε, p)-regular pair with dp(Vi, Vj) ≥ d.

We finish this section with an embedding result that allows us to find almost spanning trees
in large subsets of regular pairs. This lemma is a combination of Corollary 12 and Lemma 19
in [BCS11], nonetheless, it can be proved using the tools we develop in the Appendix.
Lemma 2.13. Let D ≥ 2 and ε > 0 satisfy ε < 1/(4D + 6). Let (V1, V2) be an (ε, p)-
regular pair in a graph G, and suppose that dp(V1, V2) ≥ ε. Let us further suppose that
|V1| = |V2| = m and let V ′i ⊂ Vi satisfy |V ′i | ≥ (2D + 4)εm, for i ∈ {1, 2}. Then G[V ′1 , V

′
2 ]

contains a copy of every tree T with maximum degree at most D and colour classes with at
most |V ′i | − (2D + 1)εm vertices, for i ∈ {1, 2} respectively.
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3. Stability

Extremal results in graph theory often have very structured solutions. It is often the case
that graphs which are in some sense close to a solution must actually look approximately like
an actual solution, a phenomenon which is known as ‘stability’. The aim of this section is to
show a stability result for the Ramsey problem for paths or cycles in the random graph. That
is, that every 2-colouring of the edges of the random graph without a monochromatic cycle,
of appropriate size, should be close to a specific type of colouring which we call extremal
colouring.

Definition 3.1 (Extremal colourings). Let α ∈ (0, 1) and let G be a graph on N vertices. We
call a red-blue colouring of E(G) α-even-extremal if there exists a partition V (G) = X ∪ Y
such that

(i) |X| ≥ (1− α)2N/3 and |Y | ≥ (1− α)2N/3,
(ii) eR(X) ≥ (1− α)e(X) and eB(X,Y ) ≥ (1− α)e(X,Y ),

and α-odd-extremal if there exists a partition V (G) = X ∪ Y such that
(i) |X| ≥ (1− α)N/2 and |Y | ≥ (1− α)N/2,
(ii) eR(X) ≥ (1− α)e(X), eR(Y ) ≥ (1− α)e(Y ) and eB(X,Y ) ≥ (1− α)e(X,Y ).

We observe that if G is a complete graph, then the colourings which show the lower bound
on the Ramsey number for cycles are 0-even-extremal and 0-odd-extremal, for even and odd
cycles, respectively. Our aim in this section is to prove the following stability result.

Theorem 3.2 (Stability lemma). For every α ∈ (0, 1), there exist positive constants δ < α
and C such that for p ≥ C/n and N ≥ (1− δ)R(Cn), the following holds. For G = G(N, p),
w.h.p. every 2-colouring of E(G) which contains no monochromatic Cn is either α-even-
extremal if n is even or α-odd-extremal if n is odd.

The proof of Theorem 3.2 relies on the regularity method for random graphs. Given
a 2-edge colouring of G(N, p), we apply the regularity lemma to obtain a reduced graph,
which is a 2-edge-coloured almost-complete graph. For odd cycles, we use a stability result
due to Jenssen and Skokan [JS21] to show that the reduced graph either contains a large
monochromatic odd cycle or it is extremal. For even cycles, using a result of Letzer [Let20],
we deduce that the reduced graph either contains a large monochromatic connected matching
or it is extremal. If the reduced graph is not extremal, then we can find a monochromatic
cycle of length n in G(N, p) using the monochromatic structure that we found in the reduced
graph. Otherwise, we show that the reduced graph being extremal implies that the colouring
of the edges of G(N, p) should be extremal as well.

3.1. Stability in almost complete graphs. In this subsection we rely on previously es-
tablished stability results for the Ramsey problem for cycles. We start with a lemma that
appears, in a way more general form, in the work of Jenssen and Skokan [JS21, Theorem 7.4]
on multicolour Ramsey numbers of odd cycles, and is in perfect shape for our applications.

Proposition 3.3 (Stability: odd case). For every α ∈ (0, 1), there exists δ > 0 such that the
following holds for every sufficiently large odd n. Let G be a graph with N ≥ (2− δ)n vertices
and at least (1− δ)

(
N
2

)
edges. Then every 2-colouring of E(G) with no monochromatic copy

of Cn is α-odd-extremal.

For the even case, previous results do not exactly fit our intentions. For this reason, we
have to keep an eye for a monochromatic connected matching, which is just matching whose
edges have the same colour and all its vertices are in the same connected component of a
given graph. We will say that a connected matching vertices has k vertices to specify the
size of the matching instead of the whole component. Finding this structure in the reduced
graph of a given regular partition is enough to find even cycles of an appropriate size.

Proposition 3.4 (Stability: even case). For every B > 3/2 and α ∈ (0, 1), there exists δ > 0
such that the following holds for every sufficiently large n. Let N ∈ N satisfy (3/2 − δ)n ≤
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N ≤ Bn, and let G be a N -vertex graph with at least (1−δ)
(
N
2

)
edges. Then every 2-colouring

of E(G) either contains a monochromatic connected matching with at least n vertices or is
α-even-extremal.

We will deduce Proposition 3.4 from a stability result for the Ramsey problem for paths,
proved by Gyárfás, Sárközy and Szemerédi [GSS09].

Lemma 3.5. For every α ∈ (0, 1), there exists δ > 0 such that the following holds for every
sufficiently large n. If N ≥ (3/2 − δ)n, then every 2-colouring of E(KN ) either contains a
monochromatic copy of Pn or is α-even-extremal.

Lemma 3.5 applies only to complete graphs; thankfully we can apply machinery developed
by Letzter [Let20, Theorem 1.5] to circumvent this issue. We simplify its statement for our
purposes.

Lemma 3.6. Let B > 1, let δ > 0 be sufficiently small and let N ≤ Bn. Suppose that G
is a 2-coloured graph on at least N + δn vertices such that every vertex has at most C

√
δn

non-neighbours, and further suppose that G has no monochromatic connected matching on
at least n vertices. Then there exists a 2-colouring of KN with no monochromatic connected
matching on at least n vertices. Moreover, there exists such a colouring so that it contains
an induced coloured subgraph of G with N vertices.

With these tools at hand, we are now ready to prove stability for the even case.

Proof of Proposition 3.3. Let G = (V,E) be a 2-coloured N -vertex graph with at least (1−
δ)
(
N
2

)
edges with no monochromatic connected matching on n vertices. By removing vertices

one by one, we can take an induced graph G′ = (V ′, E′) with N ′ ≥ (1−
√
δ)N ≥ (3/2− 2δ)n

vertices such that each vertex has at most
√
δN ≤ C

√
δn non-neighbours. By Lemma 3.6,

we get an induced coloured subgraph G′′ = (V ′′, E′′) of G′ on N ′′ = N ′ − δn ≥ (3/2 − 3δ)n
vertices which is contained in an 2-coloured copy of KN ′′ with no monochromatic connected
matching with n vertices. In particular, this implies that this 2-colouring of KN ′′ contains no
monochromatic copy of Pn−1, and therefore, by Lemma 3.5, it is α/2-even-extremal. Since
|V \ V ′′| ≤

√
δN + δn� αN , it is easy to see that G is α-even-extremal. �

3.2. Cycles and connected matchings. In this subsection we work with the structure
in the reduced graph that will allow us to embed large cycles. Recall that a connected
matching on k vertices is a matching on k vertices which belong to the same connected
component in a given graph. If this connected component is non-bipartite, we call it an
odd connected matching. This concept was introduced by Łuczak [Łuc99] to tackle cycle
embedding problems in combination with the Regularity Lemma. Here we combine this
approach with tree embedding results from Balogh, Csaba, and Samotij [BCS11] to find
cycles in a sparse setting. We remark that this idea has also been used by Kronenberg,
Krivelevich, and Mond [KKM19] to study the resilience properties of long cycles in sparse
random graphs.

We start with a property of odd connected matchings that will play an important role in
our argument.

Fact 3.7. For every pair of vertices u, v in an odd connected matching in a graph H, there
exists a sequence of vertices u = w1, w2, . . . , wt = v such that wiwi+1 ∈ E(H), for i ∈ [t− 1],
so that each vertex of H appears at most three times. Moreover, we can find such a walk
with the number of vertices being of a given parity. We will refer to such sequence as a good
even-walk or a good odd-walk between u and v, depending on its parity.

It is easy to see that Fact 3.7 is true. Indeed, for a given pair of vertices u, v, we just use
connectivity to reach a fixed odd cycle by paths from each vertex, from which we may choose
a path (possibly a single vertex) to control the parity. In this process, we use three paths in
order to build a good walk between u and v of a prescribed parity.
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Definition 3.8. For a graph H with vertex set [h], and parameters ε, p ∈ (0, 1) and m ∈ N,
we define the (ε, p,m)-blow-up of H as the graph constructed as follows. The vertex set
consist of pairwise disjoint sets V1, . . . , Vh with |V1| = · · · = |Vh| = m, such that for every
ij ∈ E(H), we add edges between Vi and Vj in such a way (Vi, Vj) is a (ε, p)-regular pair with
p-density at least ε. We will refer to the sets Vi’s as clusters.

The main result of this subsection states that we can find cycles of various lengths in the
blow-up of a connected matching. Krivelevich, Kronenberg, and Mond [KKM19] proved a
similar result for blow-ups of cycles, and here we generalise their result for blow-ups of a
connected matching.

Proposition 3.9. Let 0 < ε ≤ 1/18, p ∈ (0, 1), M > 1 and k ∈ N, and let 1/m �
ε, 1/M, 1/k. Let ` satisfy 20Mk2 log2 εm ≤ ` ≤ (1 − 50ε)km, and let H be a graph on at
most Mk vertices that contains a connected matching with at least 2k vertices. If G is a
(ε, p,m)-blow-up of H, then G contains a copy of C2`. Moreover, if the connected matching
is odd, then H contains a copy of C2`+1.

The strategy in the proof of Proposition 3.9 is to break the cycle into small paths that will
be embedded separately in the (ε, p)-regular graphs given by the edges of the matching. We
then build the cycle by connecting these paths using Fact 3.7. Two technical difficulties arise
at this point. First, the connections must avoid those vertices used to construct the paths,
and also those vertices we use to connect the paths. We will solve this by using only few
vertices in each cluster to make the connections. Second, the diameter of the blow-up of G
may be of order logm, which means that these connections have to account for this obstacle.
We address the second issue by defining the following graphs.

Definition 3.10. For h, s ∈ N, an (h, s)-double-broom is a tree constructed by taking two
disjoint copies of a binary tree of height h, and attaching their roots to the ends of a path
with s vertices, whose internal vertices are disjoint from both binary trees. We say that the
two sets of leaves of the binary trees are the end sets of the double-broom, and we say that a
double-broom starts and ends at sets A and B, respectively, if one of its end sets is contained
in A and the other one in B.

Fact 3.11. Let Pi, i ∈ {1, 2}, be vertex-disjoint copies of an (h, si)-double-broom in a graph
G, with end sets (Ai, Bi), respectively. If e(B1, A2) > 0, then G[V (P1) ∪ V (P2)] contains an
(h, s1 + s2 + 2h)-double-broom with ends (A1, B2).

We will use Fact 3.11 to combine several double-brooms in order to make a longer double-
broom. Note that the longest paths in a double-broom are those paths between any pair
of vertices belonging to different end sets. Also, once we have found an (h, s)-double-broom
with end sets A,B such that 2h+ s = `, we only need to guarantee that e(A,B) > 0 in order
to find a copy of C`. We are now set to prove Proposition 3.9.

Proof of Proposition 3.9. Let H be a graph on at mostMk vertices that contains a connected
matching on 2k vertices, and let us assume, without loss of generality, that H has only one
connected component. Let G be an (ε, p,m)-blow-up of H. Let (xi, yi)i∈[k] be a matching
in H and let M = (Xi, Yi)i∈[k] be its counterpart in G. If H is bipartite, we assume the
labelling is done in such a way that the xi’s are all in the same part and consequently the
same holds for the yi’s. Our strategy is to embed double-brooms that are almost spanning
in the regular pairs coming from the matching, and then use the structure of G to connect
those brooms. We will focus on the proof when H is non-bipartite and explicit the small
differences in the even case when it is necessary.

For each i ∈ [k], let Qi be a good even-walk in H between yi and xi+1 (indices are taken
modulo k) and let Q′k be a good odd-walk from yk to x1. (In the even case, we could take
Q′k to have even length, which would make the proof slightly simpler.) We start by finding
double-brooms inside the regular pairs given by the matching.

Claim 3.12. Let h = dlog2 εme. There exists a collection of (h, si)-double-brooms {Pi}i∈[k]

such that the following properties hold.
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(i) Pi ⊂ G[Xi ∪ Yi] and Pi starts at Xi and ends at Yi for every i ∈ [k],
(ii) |Pi| ≤ (2− 96ε)m for each i ∈ [k], and
(iii)

∑k
i=1(2h+ si) = 2`− (h+ 1) ·

(∑k−1
i=1 (|Qi| − 2) + |Q′k| − 3

)
.

Proof of the claim. Partition 2`+1 into k numbers {ti}i∈[k], as balanced as possible so that ti
is even for i ∈ [k− 1] and tk is odd. In this way, these numbers differ by at most 2 from each
other, and they satisfy 2`/k+ 3 ≥ ti ≥ 2`/k− 2. Now define si := ti − 2h− (h+ 1)(|Qi| − 2)
for i ∈ [k − 1] and sk = tk − 2h− (h+ 1)(|Q′k| − 3)− 1. Note that each si is even (since |Qi|
is even for each i and |Q′k| is odd). Also, since Qi and Q′k is a walk on at most 3|H| ≤ 3Mk
vertices, so we have

si ≥ ti − 2h− (h+ 1)3Mk ≥ 2`

k
− (h+ 1)(3Mk + 2) ≥ 2,

where in the last inequality we used ` ≥ 20Mk2h, which holds by assumption. Note that the
choices of si satisfy precisely property (iii) of the claim. Moreover, the number of vertices of
an (h, si)-double-broom is at most

2h+1 + si ≤ 4εm+
2`

k
≤ (2− 96ε)m,

where we used ` ≤ (1− 50ε)km in the last step, which again holds by assumption. Thus we
have the required property (ii) of the claim.

Then we just have to find a copy Pi of an (h, si)-double-broom in G[Xi ∪ Yi]. Notice
that double-brooms are trees with maximum degree D = 3, since si ≥ 2. To find these
embeddings, notice first that G[Xi ∪ Yi] is a (ε, p)-regular pair with density at least ε, with
ε ≤ 1/(4D + 6) = 1/18. Moreover, since each si is even, all the double-brooms are balanced
bipartite graphs, with each part having at most |Pi|/2 ≤ (2 − 96ε)m/2 = m − (2D + 1)εm
vertices. Therefore, by applying Lemma 2.13 we get the desired double-brooms. �

In the next claim, we find more double-brooms into small subsets of regular pairs; those
will be used along the walks Qi and Q′i to connect everything.

Claim 3.13. Let (Wi)i∈[2t] be a sequence of clusters of G such that, for i ∈ [2t− 1], the pair
(Wi,Wi+1) corresponds to an edge in H. For every choice of disjoint sets W ′i ⊂ Wi with
|W ′i | ≥ 10εm, we have that G[

⋃
i∈[2t]W

′
i ] contains an (h, 2t(h + 1) − 2h)-double-broom that

starts at W1 and ends at W2t, and uses at most 4εm vertices in each W ′i .

Proof of the claim. We first check that the pairs (W ′2i−1,W
′
2i)i∈[t] satisfy the hypothesis of

Lemma 2.13 to embed an (h, 2)-double-broom, which will denote by Ti. Indeed, each double-
broom has maximum degree D = 3, ε < 1/18, |W ′2i−1|, |W ′2i| ≥ 10εm = (2D + 4)εm and
each color class of an (h, 2)-double-broom has at most 2εm ≤ |W ′i | − 7εm vertices. Thus we
find the required copies of Ti ⊆ (W ′2i−1,W

′
2i)i∈[t]. Note that the each of the end-sets of these

double-brooms has at least εm vertices. So, if we consider Ti ending in Bi ⊂ W ′2i and Ti+1

starting at Ai+1 ⊂W ′2i+1, we have that

e(Bi, Ai+1) > (dp(W2i,W2i+1)− ε)|W2i||W2i+1| > 0. (3.1)

Therefore, by using Fact 3.11 several times we find an (h, 2t(h+ 1)− 2h)-double-broom. �

Now we are ready for the final part of the proof. For i ∈ [k], let Ai ⊂ Xi and Bi ⊂ Yi
be the end sets of Pi. We will say that a path connects Pi to Pi+1 (indices modulo k) if
one end of this path has a neighbour in Bi and the other end has a neighbour Ai+1. Our
aim is to find paths P ′i that connect Pi to Pi+1 that are disjoint between themselves an also
from each Pi. In addition, each P ′i will have (h+ 1)(|V (Qi)| − 2) vertices for i ∈ [k − 1] and
(h+ 1)(|V (Q′k)| − 3) + 1 vertices for i = k.

Suppose we have already found P ′1, P ′2, . . . , P ′j−1 for some 1 ≤ j ≤ k (where the case j = 1

is vacuous), so that our task is to build P ′j . We denote by (Bj ,W1,W2, · · · ,W2t, Aj+1) the
sequence of clusters coming from the walk Qj if j < k; and we let (Bk,W1,W2, . . . ,W2t+1, A1)
be the corresponding sequence for Q′k. LetW

′
i ⊂Wi be the vertices ofWi that do not intersect
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i∈[k] Pi or

⋃
i∈[j−1] P

′
i . Using that m is large, from Claim 3.12(ii) and from the sizes of each

P ′i , we infer that

|W ′i | ≥ |Wi| − (2− 96ε)
m

2
−

j∑
i=1

|P ′i | ≥ 48εm− k(h+ 1)3Mk ≥ 30εm.

Since each vertex appears at most three times in the walk Qj , we can take pairwise vertex-
disjoint subsets W ′′i ⊂ W ′i with 10εm vertices such that the pair (W ′′i ,W

′′
i+1) comes from an

edge from H for each i ∈ [2t], if j < k, or i ∈ [2j + 1], if j = k. From Claim 3.13, we get
that G[

⋃
i∈[2t]W

′′
i ] contains an (h, 2t(h+ 1)− 2h)-double-broom that starts at W1 and ends

in W2t.
Now the analysis differs depending on the value of j. Suppose first that j < k. Since

(Yj ,W1) and (W2t, Xj+1) both come from an edge in H and the ends of the double-brooms
have at least εm vertices, we can use the same argument as in (3.1) to find the desired path
P ′j . Since Qj is a good even-walk between yj and xj+1 in H, we have that 2t+ 2 = |Qj |, and
therefore P ′j has precisely 2t(h+ 1) = (h+ 1)(|Qj | − 2) vertices.

We are only left the case j = k. Again, we have that G[
⋃
i∈[2t]W

′′
i ] contains an (h, 2t(h+

1)− 2h)-double-broom starting at A′k ⊂W1 and ending at B′k ⊂W2t. However, now we have
to connect this broom to the start set A1 of P1 via the set W ′′2t+1. By the same reason as
before, we can find an edge between Bk ⊂ Yk (the end set of Pk) and A′k, as both have at
least εm vertices and since they come from an edge in H. Now we want to find a vertex
u ∈ W ′′2t+1 that has a neighbour in both B′k and A1. Notice that, by the same calculation
of (3.1), the set of vertices in W2t+1 with no neighbours in B′k has fewer than εm vertices,
and similarly for B′k. Therefore, since |W ′′2t+1| > 2εm we can find such a vertex u, as desired.
Since Q′k is a good-odd walk, we have |Q′k| = 2t + 3 and therefore we have that P ′k has
precisely 2t(h+ 1) + 1 = (h+ 1)(|Q′k| − 3) + 1 vertices.

Therefore, using the double-brooms Pi’s and the paths P ′i ’s connecting Pi with Pi+1, we
may find a cycle of length

k∑
i=1

(2h+ si) +

k−1∑
i=1

(h+ 1)(|Qi| − 2) + (h+ 1)(|Q′k| − 3) + 1 = 2`+ 1,

which finishes the proof. �

3.3. Proof of the Stability lemma. We are now ready to prove Theorem 3.2. The proof
is divided into three steps: starting from G = G(N, p), we apply regularity; then we deduce
that the reduced graph should follow an extremal colouring; and finally we transfer that
information to G.

Proof of Theorem 3.2. During the proof we will choose constants in the following hierarchy

1/n0 � 1/C � η � ε� δ � δ′ � α′ � α� 1.

Step 1: Applying regularity. Let G = G(N, p). By Lemma 2.8 we know that, for some C > 0

and p ≥ C/N , G is (η, p)-uniform. In particular, we have that e(G) = (1 ± η)p
(
N
2

)
. Let us

consider a red-blue colouring of E(G), and let GR and GB be the graphs formed by the red
and blue edges, respectively. By assumption, neither GR nor GB contain a copy of Cn. Since
both GR and GB are (η, p)-upper uniform, we may use the Colourful sparse regularity lemma
(Theorem 2.12) in order to find an (ε, p)-regular partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk, with
k ≥ 1/ε, so that all but at most εk2 pairs (Vi, Vj) are (ε, p)-regular in both GR and GB.

Let ΓR and ΓB be the (ε, p, ε)-reduced graph of GR and GB, respectively, and set Γ =
ΓA ∪ ΓB. For all but at most 2εk2 choices, we have that the pair (Vi, Vj) is (ε, p)-regular
both for GR and GB; we will show that any such pair belongs to Γ. Indeed, since G is
(η, p)-uniform, we know that for every such pair, G[Vi, Vj ] contains at least (1 − η)p|Vi||Vj |
edges. Therefore, in the most popular colour C among those used in G[Vi, Vj ], we certainly
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have GC [Vi, Vj ] ≥ (1 − η)p|Vi||Vj |/2 ≥ εp|Vi||Vj |, and therefore the pair (Vi, Vj) belongs to
ΓC ⊆ Γ. We deduce then that

e(Γ) ≥ (1− 3ε)
k2

2
.

Now we colour the edges of Γ by declaring an edge red or blue if it belongs to ΓR or ΓB,
respectively, where ties are broken arbitrarily.

Step 2: Extremal colouring in the reduced graph. In this part, we will show that the bound
N ≥ (1 − δ)R(Cn) implies that this colouring of Γ is either α′-odd- or α′-even-extremal,
depending on the parity of n.

Assume that n is odd first. We can assume δ′ � α′ is enough to apply Proposition 3.3
with δ′, α′ in place of δ and α. Let k1 be the largest odd number such that k ≥ (2 − δ′)k1.
Proposition 3.3 states that the colouring of Γ either is α′-odd-extremal or it contains a
monochromatic copy of Ck1 . We would like to rule out this last possibility. If it contains a
monochromatic Ck1 , say in red, then GR contains a (ε, p,m)-blow-up of an odd connected
matching on at least k1 − 1 vertices, for some m ≥ b(1 − ε)N/kc. Therefore, by applying
Proposition 3.9, with M = 3, we infer that if

240k2 log2N ≤ n− 1 ≤ (1− 50ε)(k1 − 1)m,

then Cn ⊂ GR, which is a contradiction to our assumptions. Since N = O(n) and n� log n,
the lower bound is true for sufficiently large n. Moreover, this is going to be true for all future
applications of Proposition 3.9, so we will not check again if this inequality holds. For the
upper bound, first notice that k1 − 1 ≥ k/(2− δ′)− 3 ≥ (1 + δ′/2)k/2, since k ≥ 1/ε. Also,
m ≥ (1− 2ε)N/k ≥ (1− δ − 2ε)2n, and thus

(1− 50ε)(k1 − 1)m ≥ (1− 50ε)

(
1 +

δ′

2

)
k

2

(1− δ − 2ε)2n

k
≥
(

1− δ − 52ε+
δ′

2

)
n ≥ n,

as long as δ, ε � δ′. In the above inequality we used that N ≥ (1 − δ)2n for the odd case
and that we could find odd cycles of length roughly k/2. The conclusion is that Γ cannot
contain a monochromatic copy of Ck1 , and therefore the colouring of Γ is α′-odd-extremal,
as required.

The argument changes in a straightforward manner when considering the case of even n,
so we omit it. In any case, the conclusion we get that the red-blue colouring of E(Γ) is
α′-odd-extremal, or α′-even-extremal, according to the parity of n.

Step 3: Extremal colouring in the random graph. Now that we have established that Γ follows
an extremal colouring, we will show that G inherits this colouring. We consider a partition
V (Γ) = X ∪ Y , with |X| ≥ |Y |, given by the definition of extremal colourings (red colour
inside parts and blue across parts). We also consider the partition V (G) = X ′ ∪ Y ′ given by
the union of the corresponding clusters contained in X or in Y , respectively.

Claim 3.14. e(GR[X ′, Y ′]) < αe(G[X ′, Y ′])/2.

Proof of the claim. To aim for a contradiction, assume that e(GR[X ′, Y ′]) ≥ αe(G[X ′, Y ′])/2.
We will show that ΓR contains an odd connected matching on at least |X|+αk/400 vertices,
in which we can find Cn by using Proposition 3.9, this is a contradiction since G does not
contain any monochromatic Cn.

First, we will prove that ΓR(X,Y ) is dense. As G is (η, p)-uniform, we have that

eG(X ′, Y ′) ≥ (1− η)p|X ′||Y ′| ≥ (1− α′)2pN2

18
≥ pN2

36
,

provided η, α′ � 1. By discounting the edges from G which are not present in Γ, we have

1

p
eGR

(X ′, Y ′)− 10εN2 ≤
∑

(A,B)∈ΓR[X,Y ]

dp(A,B)|A||B| ≤ e(ΓR[X,Y ])

(
N

k

)2

,
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and thus

e(ΓR[X,Y ]) ≥
(
k

N

)2

· α
2
·
(
N2

36
− 10εN2

)
≥ αk2

100
. (3.2)

By fairly standard arguments, one can show that (3.2) implies that ΓR[X,Y ] contains a path
P with αk/100 vertices. Set X̃ = X \ V (P ), and let us show now that ΓR[X̃] is almost
complete. Indeed, as the colouring of Γ is α′-extremal, we have

e(ΓcR[X]) ≤ α′
(
|X|
2

)
+ 5εk2 ≤ 2α′k2, (3.3)

and thus

e(ΓR[X̃]) ≥
(
|X|
2

)
− 2α′k2 ≥

(
|X̃|
2

)
− 2α′k2.

Therefore, using the classical Erdős and Gallai’s theorem [EG59], we can find a cycle C ⊂
ΓR[X̃] with

|V (C)| ≥ 2e(ΓR[X̃])

|X̃| − 1
≥ 2

|X̃| − 1

((
|X̃|
2

)
− 2α′k2

)
≥ |X̃| − 20α′k, (3.4)

where we used that |X̃| − 1 ≥ k/5 if α′ is small enough. Let P ′ be a maximal subpath of
P with both ends in X such that the endings of P have more than |V (C)|/2 red neighbours
in V (C). If P ′ is obtained by removing one end vertex at a time, one can conclude that
|V (P ) \ V (P ′)| ≤ 2|X ∩ V (P ) \ V (P ′)|+ 2. Using the definition of P ′ and (3.3), we get

2α′k2 ≥ |X ∩ V (P ) \ V (P ′)| · |V (C)|
2

≥ |X ∩ V (P ) \ V (P ′)| · k
10
,

using that |X̃| ≥ k/4 if α′ � α are small enough. Therefore, we have |V (P )\V (P ′)| ≤ 50α′k.
Let u and v be the endpoints of P ′. Since both u and v have more than |V (C)|/2 red
neighbours in C, there exists an edge u′v′ ∈ E(C) such that uu′, vv′ ∈ ΓR, which allows us
to find a cycle on at least

|C|+ |P ′| ≥ |X̃| − 20α′k + |P | − 50α′k ≥ |X|+ αk

200
− 70α′k ≥ |X|+ αk

400

vertices. Note that this cycle is a connected matching on at least |V (C)| − 1 vertices. More-
over, as ΓR[V (C)] spans at least

(|C|
2

)
− 2α′k2 edges, it is easy to see that it must be non-

bipartite. Finally, we may find a monochromatic copy of Cn by applying Proposition 3.9 if
we prove that n ≤ (1− 50ε)(|X|+ αk/400)m. Indeed, using that |X|N ≥ (1− α′)(1− δ)kn
(for both parities) and that m ≥ (1− 2ε)N/k, we get that

(1− 50ε)|X|m ≥ (1− 50ε)(1− α′)(1− 2ε)(1− δ)n ≥ (1− 2α′)n, (3.5)

provided that ε � δ � α′. Using that (1 − 50ε)m ≥ n/2k for small enough ε, we conclude
that

(1− 50ε)

(
|X|+ αk

400

)
m ≥ (1− 2α′)n+

α

800
n ≥ n,

as long as ε� α′ � α. This finishes the proof of this claim. �

Now the proof splits according to the parity of n, due to the inherent difference between
these two problems. In the odd case the cycle cannot be embedded in the blue bipartite
graph because of the chromatic number while in the even case it is a matter of space.

Claim 3.15. If n is odd, then e(GB[X ′]) < αe(G[X ′])/2 and e(GB[Y ′]) < αe(G[Y ′])/2.

Proof of the claim. Suppose by contradiction that e(GB[X ′]) ≥ αe(G[X ′])/2 (the case ob-
tained by replacing X ′ with Y ′ is really analogous). We will use this to show that ΓB
contains an odd connected matching with at least 2|Y | − 20α′k vertices, which we will use in
order to find a blue copy of Cn in G.
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We first prove that ΓB[X] contains many edges. Again, since G is (η, p)-uniform we have
that

e(G[X ′]) ≥ p

2

(
|X ′|

2

)
≥ p|X ′|2

8
≥ pN2

32
.

As in (3.2), this lower bound implies that e(ΓB[X]) ≥ αk2/100, but we will not use this infor-
mation to find a path. Again, by the same argument as in (3.3), we have that e(ΓcB[X,Y ]) ≤
2α′k2. By a result of Jackson [Jac81, Theorem 3], we can find a cycle C ⊂ ΓB[X,Y ] with

|V (C)| ≥ 2e(ΓB[X,Y ])

|X|
−O(1) ≥ 2

|X|
·
(
|X||Y | − 2α′k2

)
−O(1) ≥ 2|Y | − 20α′k,

using that |X| ≥ k/4 and that k is large. Now we argue that this cycle is in a non-bipartite
component of ΓB. Note that because of the lower bound on |Y |, we have that |X|−|Y | ≤ 2αk
and then

|X \ V (C)| = |X| − |V (C)|/2 ≤ |X| − |Y |+ 10α′k ≤ 12α′k.

Therefore, the number of edges of ΓB[X] touching X \V (C) is at most 12α′k2. Since α� α′,
we have e(ΓB[X]) ≥ αk2/100 > 12α′k2 and therefore V (C) ∩X contains a blue edge. This
implies that V [C] induces a large odd-matching in ΓB.

Now we apply Proposition 3.9 in order to find a copy of Cn in GB, which is a contradiction.
To do so, we only need to check that n ≤ (1−50ε)(2|Y |−20α′k)m. Indeed, as 2|Y | ≥ (1−α′)k
and m ≥ (1− 2ε)(1− δ)2n/k, we have

(1− 50ε)(2|Y | − 20α′k)m ≥ (1− 30α′)2n ≥ n,

since ε� δ � α′ � 1. Thus, we have shown that e(GB[X ′]) < αe(G[X ′])/2. �

Now we move to the even case.

Claim 3.16. If n is even, then e(GB[X ′]) < αe(G[X ′])/2.

Proof of the claim. By contradiction, let us assume that e(GB[X ′]) ≥ αe(G[X ′])/2. Again,
our aim is to find a blue copy of Cn in G. First, we will show that ΓB contains a connected
matching on at least 2|Y |+αk/400 vertices. Similarly as in the previous cases, one can show
that e(ΓB[X]) ≥ αk2/100 and that e(ΓcB[X,Y ]) ≤ 2α′k2. Therefore, we may find a path
P ⊂ ΓB[X] with αk/100 vertices. Let X̃ = X \ V (P ). By the same result of Jackson [Jac81]
used in Claim 3.15, we can find a cycle C ⊂ ΓB[X̃, Y ] with

|V (C)| ≥ 2e(ΓB[X̃, Y ])

|X̃|
−O(1) ≥ 2

|X̃|

(
|X̃||Y | − 2α′k2

)
−O(1) ≥ 2|Y | − 30α′k,

using that |X̃| ≥ k/4 − |P | ≥ k/5 and that k ≥ 1/ε. Now we take a maximal path P ′ ⊂ P
such that the endpoints have at least |C|/4 blue neighbours in V (C) ∩ Y . By the upper
bound on e(ΓcB[X,Y ]), we conclude that

2α′k2 ≥ |V (P ) \ V (P ′)| · |C|
4
≥ |V (P ) \ V (P ′)| k

15
,

and thus |V (P )\V (P ′)| ≤ 30α′k. By the same reasoning as in Claim 3.15, there exist vertices
u′, v′ ∈ V (C)∩ Y at distance 2 in C such that the ends u, v of P ′ satisfy uu′, vv′ ∈ ΓB. This
yields a cycle on |V (C)| + |V (P ′)| − 1 vertices. Since this cycle might be odd, we find a
connected matching with possibly one less vertex. Therefore, this connected matching has at
least

2|Y | − 20α′k +
α

160
k − 30α′k − 2 ≥ 2|Y |+ α

400
k

vertices. Now, by checking that 2|Y |N ≥ (1 − α′)(1 − δ)kn, the proof follows by applying
Proposition 3.9 (doing the same calculation as in (3.5)). �
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To finish the proof, we set X ′′ = X ′ ∪V0 and show that the partition X ′′ ∪Y ′ verifies that
the colouring is α-even/odd-extremal. Let n be odd, and recall that each cluster of Γ has
m ≥ (1− 2ε)N/k vertices. By the definition of X ′ and Y ′,

|X ′|, |Y ′| ≥ (1− α′)k
2
m ≥ (1− α′)(1− 2ε)

N

2
≥ (1− α)

N

2
,

since ε � α′ � α. By Claim 3.15, we have that e(GB[Y ′]) ≤ αe(G[Y ′]). Now let E0 be the
set of edges touching V0. Since G is (η, p)-uniform, we have that |E0| ≤ 2εpN2, and therefore
we have

e(GB[X ′′]) ≤ e(GB[X ′]) + |E0| ≤
α

2
e(G[X ′′]) + 2εpN2 ≤ αe(G[X ′′]),

as ε � α � 1 and since e(G[X ′′]) ≥ (1 − η)p
(|X′′|

2

)
≥ pN2/16. A similar argument shows

that e(GR[X ′′, Y ′]) ≤ αe(G[X ′′, Y ′]), which proves that the colouring is α-odd-extremal. The
case when n is even follows essentially the same proof. �

4. Rotation-extension

4.1. Boosters in expanders. To find long cycles in expander subgraphs, we will use the
well-known rotation-extension technique pioneered by Pósa [Pós76].

A pair {u, v} ∈ V (2) is a booster in a graph G if G+ uv is Hamiltonian or its longest path
is longer than that of G. Observe that if G is connected and non-Hamiltonian and P is a
longest path in G from u to v, then {u, v} is a booster. Indeed, P +{u, v} closes to a cycle C.
If |V (C)| = |V (G)| then we have a Hamilton cycle; otherwise, together with the connectivity
of G we have that C is joined to a vertex outside of V (C), so we can find a path P ′ which
contains all of V (C) and has more vertices than |V (C)| = |V (P )|.

Lemma 4.1. Let d, k,M,m, n satisfy d ≥ 2, k + 1 ≥ m, m ≤M and M ≤ n/4. Suppose G
is an n-vertex graph which is a (k, d)-expander and (m,M)-joined. If G is not Hamiltonian,
then G has at least 1

16

(
n
2

)
boosters.

To prove Lemma 4.1, we recall the basics of the rotation-extension technique. Let P be a
path in a graph G, whose endpoints are u and v, and we consider its vertices to be ordered
so that u is its first vertex. Given x ∈ V (P ), we write x− for the vertex before x on P , and
x+ for the vertex after x on P , if they exist. For X ⊆ V (P ), we write X− = {x− : x ∈ P}
and X+ = {x+ : x ∈ P}. Note that if x ∈ V (P ) is a neighbour of v, then P − xx+ + vx is a
path on G from u to x+ and vertex set V (P ). We say such a path is obtained from P by an
elementary rotation. A path obtained from P by a sequence of elementary rotations, with u
fixed, is a path derived from P . The set of ending vertices of paths derived from P , including
v, will be denoted by S(P, u). Note that S(P, u) ⊆ V (P ), and that for every w ∈ S(P, u)
there exists a path in G of the same length as P with endpoints u and w. The following
result was shown by Brandt, Broersma, Diestel and Kriesell [Bra+06, Lemma 2.6].

Lemma 4.2. Let P be a longest path in a graph G with endpoints u, v, and let S = S(P, u).
Then N(S) ⊆ S+ ∪ S−. In particular (since v+ does not exist), |N(S)| < 2|S|.

Proof of Lemma 4.1. First, we observe that G is connected. Indeed, suppose not, and let
{A,B} be a partition of V (G) without crossing edges. Suppose that |A| ≤ |B| and in
particular that |B| ≥ n/2 ≥ M . Since N(A) \ A = ∅ and since G is (k, d)-expander, then
|A| ≥ k+ 1 ≥ m. Hence, any pair of sets A′ ⊆ A and B′ ⊆ B of sizes m,M respectively have
e(A′, B′) = 0, which is a contradiction to the fact that G is (m,M)-joined. This shows that
G is connected.

Next, we show that for each vertex u which is a start of a longest path P in G, the bound
|S(P, u)| ≥ (n −M + 1)/3 holds. If this is shown to be true, then for each v ∈ S(P, u), the
pair {u, v} is a booster (since G is connected). Thus there are (n−M + 1)/3 ≥ n/4 booster
pairs adjacent to u, but also at least n/4 other endpoints of a longest path in G. These two
pieces of information together imply that the number of boosters is at least 1

16

(
n
2

)
, as desired.
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Let P be a longest path in G with endpoints u and v, and let S = S(P, u). As discussed,
it is enough to show that |S| ≥ (n −M + 1)/3. By Lemma 4.2, we have |N(S)| < 2|S|.
Since G is a (k, 2)-expander, this implies |S| ≥ k + 1 ≥ m. Then Lemma 2.2 implies that
|N(S)| ≥ n−M−|S|+1. Therefore, we deduce n−M+1 ≤ 3|S| and thus |S| ≥ (n−M+1)/3,
as required. �

4.2. Boosters in bipartite expanders. We need to tailor the rotation-extension technique
to work in bipartite graphs. This has been done for balanced bipartite graphs, e.g. by
Frieze [Fri85] and Bollobás and Kohayakawa [BK91], our treatment here is slightly different
to allow for unbalanced graphs.

Given a bipartite graph G with parts V1, V2 and |V1| ≥ |V2|, we say that a pair {u, v} /∈
E(G) with u ∈ V1, v ∈ V2 is a bipartite booster for G if G + uv contains a cycle of length
2|V2| or its longest path is longer than that of G. Given a set of vertices S, an S-path is a
path whose endpoints are in S.

Lemma 4.3. Let d, k,m, n satisfy d ≥ 2, k + 1 ≥ m and m ≤ n. Suppose G is a bipartite
graph with parts V1, V2 such that |V1| ≥ |V2|+m = n+m which is a (k, d)-bipartite-expander
and m-bipartite-joined. Then

(i) G is connected,
(ii) if P is a longest path in G, then P is a V1-path,
(iii) if G does not contain a 2|V2|-length cycle, then for any longest V1-path P = v0v1 · · · v`,

the pair {v1, v`} is a bipartite booster.

Proof. To see (i), suppose there exists a partition {A,B} of V (G) without crossing edges.
Suppose |A ∩ V1| ≤ |B ∩ V1|. In particular, |B ∩ V1| ≥ m. Since G is m-bipartite-joined, we
see |N(B ∩V1)| > |V2| −m and thus |A∩V2| < m. Since G is a (k, d)-bipartite-expander, we
have |N(A ∩ V2)| ≥ d|A ∩ V2| ≥ |A ∩ V2|. Select A′ ⊆ A ∩ V1 of size precisely |A ∩ V2| < m.
Then we have N(A′) ⊆ A ∩ V2, but |A ∩ V2| ≥ |N(A′)| ≥ 2|A′| = 2|A ∩ V2|, a contradiction.

To see (ii), let P be a longest path in G and suppose it is not a V1-path. Let u, v be
its endpoints, suppose v ∈ V2, and let S = S(P, u). Note that S ⊆ V2, since v ∈ V2. By
Lemma 4.2, |N(S)| < 2|S|. Since G is (k, d)-expander and d ≥ 2, we deduce |S| ≥ k+1 ≥ m.
Note that |V1 \ V (P )| ≥ |V1| − |V2| ≥ m. Since G is m-bipartite-joined, there exists an edge
between S and V1 \ V (P ). Hence, there is a longest path P ′ with an endpoint having a
neighbour outside of V (P ′), which clearly contradicts the maximality of P .

Finally, to see (iii), let P = v0v1 · · · v` be a longest V1-path in G. Note that adding {v1, v`}
to G gives a cycle C of length ` and V (C) = V (P ) \ {v0}. If ` = 2|V2|, then {v1, v`} is a
bipartite booster, and so we may suppose ` < 2|V2|. Note that |V (P ) ∩ V2| < |V2|, and so
there exists a vertex u ∈ V2 \ V (P ). Since G is connected (by (i)), there exists a shortest
path Q starting in u and ending in some vertex of V (P ). This path cannot end in v0, as
that would yield a longer path than P in G, so it must end in V (C). Merging Q with C
yields a path of length at least ` in G + v1v` which is not a V1-path, which by (ii), means
that G+ v1v` has a V1-path of length at least `+ 1. We conclude that G+ v1v` has a path
longer than that of G, and thus {v1, v`} is a bipartite booster. �

Lemma 4.4. Let d, k,m, n satisfy d ≥ 2, k + 1 ≥ m, and n ≥ 5m. Suppose G is a bipartite
graph with parts V1, V2 such that |V1| ≥ |V2|+m = n+m, which is a (k, d)-bipartite-expander
and m-bipartite-joined. If G does not contain a cycle of length 2|V2|, then it contains at least
n2/8 bipartite boosters.

Proof. Let P be a longest path in G, with starting vertex u. By Lemma 4.3(ii), P is a V1-
path. Recall that S = S(P, u) ⊆ V1 is the set of ending vertices of path derived from P . Let
T ⊆ V2 be the set of penultimate vertices of all paths derived from P . That is, if u · · ·wv is
any path derived from P , then w ∈ T and v ∈ S. Note that T, S ⊆ V (P ). We note that it
is enough to show that |S| ≥ n/2 and |T | ≥ n/4. Indeed, by Lemma 4.3(iii), for each w ∈ T
we have that {u,w} is a bipartite booster, so |T | ≥ n/4 implies that u is adjacent to at least
n/4 bipartite boosters. But |S| ≥ n/2 means that at least n/2 vertices are also endpoints
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of a longest path in G, so this means that those vertices are also adjacent to at least n/4
bipartite boosters each. Thus the number of bipartite boosters is at least |S|n/4 ≥ n2/8, as
desired.

Lemma 4.2 implies that |N(S)| < 2|S|. As G is (k, 2)-bipartite-expander, then |S| ≥
k + 1 ≥ m. Also, since G is m-joined and |V1| ≥ n + m, then |N(S)| ≥ |V1| −m + 1 > n.
Therefore |S| > |N(S)|/2 > n/2, as required.

So it only remains to show that |T | ≥ n/4. Given x ∈ V (P ), recall that x−, x+ are the
predecessor and successor of x with respect to the vertex ordering in P . We will show that
if x ∈ S, then x− ∈ T or x+ ∈ T . This easily implies that |T | ≥ |S|/2 ≥ n/4, as desired.

To show this, suppose, for a contradiction, that x ∈ S but x−, x+ /∈ T . Since x ∈ S,
there is a sequence P0, P1, . . . , Pt of paths derived from P , where P0 = P , such that Pt has
endpoints u and x, and for 1 ≤ i ≤ t, the path Pi is obtained from Pi−1 by an elementary
rotation. Let 0 ≤ j ≤ t be the maximum integer such that x is adjacent to both x+ and
x− in Pj . Our assumptions imply that 0 ≤ j < t. Suppose Pj = u · · ·x1xx2 · · ·w, with
{x1, x2} = {x−, x+}. By the choice of j, x is adjacent to both x+ and x− in Pj , but not in
Pj+1. Since Pj is a longest path, it is a V1-path, so the only possibility is that the edge wx1

was used to rotate Pj and obtain Pj+1. But this means that x is the endpoint of Pj+1 and
x2 is the penultimate vertex of Pj+1. Thus x2 ∈ T , a contradiction. �

4.3. Boosters in subgraphs of random graphs. In this section, we modify an argument
by Lee and Sudakov [LS12] which shows that, with high probability, every sufficiently sparse
expander subgraph H ⊆ G(n, p) has a booster in G(n, p). We need to modify their argument
slightly to allow for bipartite boosters and to give a lower bound on the number of such
objects appearing on G(n, p), but otherwise the argument is the same.

Let F be a family of graphs on the same n-vertex set V together with a family of subgraphs
B = {BF ⊆

(
V
2

)
: F ∈ F}, one for each F ∈ F . We say (F ,B) is (δ, α)-boosterable if

(i) for each F ∈ F , |E(F )| ≤ δn2, and
(ii) for each F ∈ F , BF ⊆

(
V
2

)
\ E(F ) and |BF | ≥ αn2.

For instance, F can be taken as the set of all expander, joined, non-Hamiltonian subgraphs
on a vertex set V , and for each F ∈ F we can take BF as the set of boosters of F .

Lemma 4.5. Let α, δ > 0 satisfy 1024δ ≤ α2 and δ ≤ 1/e. Let G = G(n, p) for p ≥ 1/n,
and let F be a (δp, α)-boosterable family on V (G). Then w.h.p. for any F ∈ F with F ⊆ G,
we have |BF ∩ E(G)| > αpn2/2.

Proof. For any F ∈ F , since BF ∩ E(F ) = ∅, we have

Pr(|BF ∩ E(G)| ≤ αpn2/2|F ⊆ G) = Pr(|BF ∩ E(G)| ≤ αpn2/2) ≤ e−αpn2/8,

where the last inequality follows from a Chernoff bound, using that |BF ∩E(G)| is a sum of
independent {0, 1} random variables and E[|BF ∩ E(G)|] ≥ αn2.

Let q be the probability that for some F ∈ F , F ⊆ G but |BF ∩ E(G)| ≤ αpn2/2. Then,
by a union bound, we have

q ≤
∑
F∈F

Pr(F ⊆ G ∧ |BF ∩ E(G)| ≤ αpn2/2)

=
∑
F∈F

Pr(|BF ∩ E(G)| ≤ αpn2/2|F ⊆ G) Pr(F ⊆ G)

≤ e−αpn2/8
∑
F∈F

Pr(F ⊆ G) ≤ e−αpn2/8
∑

F⊆Kn,|E(F )|≤δpn2

Pr(F ⊆ G)

≤ e−αpn2/8
δpn2∑
t=0

(
n2

t

)
pt ≤ e−αpn2/8

δpn2∑
t=0

(
en2p

t

)t
.
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For fixed positive x > 0, the function t 7→ (x/t)t is increasing between 0 and x/e. Since
δ ≤ 1/e, we have that each term of the last sum is at most (e/δ)δpn

2 . Therefore we obtain

q ≤ e−αpn2/8
δpn2∑
t=0

(
en2p

t

)t
≤ n2e−αpn

2/8
(e
δ

)δpn2

= n2e−pn
2(δ(1−ln δ)−α/8) ≤ n2e−αpn

2/16,

where in the last step we used −x lnx ≤
√
x (valid for all x > 0) and 1024δ ≤ α2 to deduce

δ(1 − ln δ) ≤ δ +
√
δ ≤ 2

√
δ ≤ α/16. Then p ≥ 1/n shows that the last term is o(1), as

required. �

5. Finding cycles

After applying the stability results to understand the global structure of the colouring of
the random graph G, our task will be to find cycles in some monochromatic subgraph related
to the extremal colouring. That subgraph will inherit expansion properties of G, which we
will use to find cycles of prescribed lengths. The goal of this section is to prove the following
lemma.

Lemma 5.1 (Cycle finder lemma). For each λ > 0, there exist B,C, ε > 0 such that the
following holds with high probability. Let p ≥ C/n and G = G(n, p). For all subgraphs (not
necessarily induced) H ⊆ G such that

(i) |V (H)| > λn,
(ii) δ(H) ≥ λnp, and
(iii) |E(G[V (H)])| − |E(H)| ≤ εpn2;

it holds that C` ⊆ H for all ` ∈ {B log n, . . . , |V (H)|}.

We also have the following ‘bipartite’ version of Lemma 5.1.

Lemma 5.2 (Bipartite cycle finder lemma). For all λ > 0 there exist B,C, ε > 0 such that
the following holds with high probability. Let p ≥ C/n and G = G(n, p). For all bipartite
subgraphs (not necessarily induced) H ⊆ G with vertex classes V1, V2 such that

(i) |V1| ≥ |V2| > λn,
(ii) δ(H) ≥ λnp, and
(iii) |G[A,B]| − |H[A,B]| ≤ εpn2;

it holds that C` ⊆ H for all even ` ∈ {B log n, . . . , 2|V2|}.

After gathering some tools on expansion, we will give the proof of Lemma 5.1 at the end
of this section.

5.1. Expansion from minimum degree. Now we show that each subgraph of a random
graph which sufficiently large minimum degree has nice expansion properties. Similar argu-
ments in a similar setting were given, e.g. by Krivelevich, Lubetzky and Sudakov [KLS14].

Lemma 5.3. For each η, d > 0, there exist C, c > 0 such that the following holds. Let
p ≥ C/n and G = G(n, p). Then w.h.p.

(i) for each G′ ⊆ G with δ(G′) ≥ ηpn, G′ is a (cn, d)-expander, and
(ii) for each bipartite G′ ⊆ G with δ(G′) ≥ ηpn, G′ is a (cn, d)-bipartite-expander.

Proof. We will only prove the statement for non-bipartite graphs, since the statement for
bipartite graphs has essentially the same proof. Without loss of generality we assume d ≥ 4,
since that gives a stronger statement. Set

c = η2/(16e2(2d+ 1)2) and C = max
{

4(d+ 1)η−1, 8η−1
}
.

Let k = cn. Suppose G′ ⊆ G is a graph with δ(G′) ≥ ηpn which is not a (k, d)-expander.
Let X ⊆ V (G′) such that |X| ≤ k and |NG′(X) \X| ≤ d|X|, and let Y = NG′(X) \X. As
δ(G′) ≥ ηpn, we conclude that from the

(|X|
2

)
+ |X||Y | potential edges incident to X in G′,

at least ηpn|X|/2 of them are actually present in G′, and thus also in G. The probability of
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that event can be bounded from above by using an union bound over all possible choices of
X and Y , and we obtain (with explanations to follow)∑
1≤x≤k

(
n

x

)(
n

dx

)(
x2/2 + dx2

ηpnx/2

)
pηpnx/2 ≤

∑
1≤x≤k

(en
x

)x (en
dx

)dx(e(x2 + 2dx2)

ηpnx

)ηpnx/2
pηpnx/2

=
∑

1≤x≤k

[
ed+1

dd

(n
x

)d+1 (x
n

)ηpn/2(e(2d+ 1)

η

)ηpn/2]x

≤
∑

1≤x≤k

[
ed+1

dd

(x
n

)ηpn/4(e(2d+ 1)

η

)ηpn/2]x

≤
∑

1≤x≤k

[(x
n

)ηpn/4(e(2d+ 1)

η

)ηpn/2]x

=
∑

1≤x≤k

[(x
n

)1/4
(
e(2d+ 1)

η

)1/2
]ηpnx

.

Here, in the first inequality we used the bound
(
n
k

)
≤ (en/k)k; in the second inequality we

used the choice of C and p ≥ C/n to deduce d + 1 ≤ ηpn/4, and in the third inequality we
used that d ≥ 4 to deduce ed+1/dd ≤ 1.

We separate the last sum in two terms S1 and S2, where S1 consists on the sum of the first
k1 := (c/p)1/2 terms, and S2 consists of the sum of the terms from k1 to k. We will show
that both S1 and S2 are o(1), from which we conclude that the lemma holds.

We begin by considering S1. Since p ≥ C/n we have k1 = O(n1/2) and therefore for each
x ≤ k1 we have x/n = O(n−1/2). Thus we have (x/n)1/4 = O(n−1/8), and therefore

S1 =
∑

1≤x≤k1

[(x
n

)1/4
(
e(2d+ 1)

η

)1/2
]ηpnx

≤
∑

1≤x≤k1

(
O(n−1/8)

)ηpnx
≤

∑
1≤x≤k1

[
O(n−ηpn/8)

]x
≤

∑
1≤x≤k1

[
O(n−ηC/8)

]x
,

where the last inequality follows since p ≥ C/n, which we use to establish O(n−ηpn/8) =

O(n−ηC/8). For large enough n, the term O(n−ηC/8) is less than 1, and therefore

S1 ≤
∑

1≤x≤k1

[
O(n−ηC/8)

]x
≤

∑
1≤x≤k1

O(n−ηC/8) = O(k1n
−ηC/8) = O(n1/2−ηC/8).

Since C ≥ 8η−1, we conclude that S1 = O(n−1/2) = o(1).
Now we consider S2. For each x ≤ k = cn we have x/n ≤ c. Hence, we have

S2 =
∑

k1≤x≤k

[(x
n

)1/4
(
e(2d+ 1)

η

)1/2
]ηpnx

≤
∑

k1≤x≤k

[
c1/4

(
e(2d+ 1)

η

)1/2
]ηpnx

≤
∑

k1≤x≤k

(
1

2

)ηpnx
,

where in the last inequality we used c ≤ η2/(16e2(2d + 1)2). Using the bound x ≥ k1 =

(c/p)1/2 and p ≥ C/n, we have that ηpnx = Ω(n1/2). Since k = O(n), we conclude that

S2 ≤
∑

k1≤x≤k

(
1

2

)Ω(n1/2)

= O(k2−Ω(n1/2)) = O(n2−Ω(n1/2)) = o(1),

as required. �
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5.2. Sparsification. The following lemma allows us to find subgraphs of graphs which still
retain certain minimum degree and joinedness properties, but are way sparser.

Lemma 5.4 (Sparsificator). Given η, c > 0 and 0 < δ ≤ 1/4, there exists C ≥ 0 such that
the following holds. Let p ≥ C/n, let G and let X,Y ⊆ V (G) be such that

(i) δ(G) ≥ ηpn,
(ii) for each pair of disjoint 2cn-sets of vertices A ⊆ X, B ⊆ Y , eG(A,B) ≥ pc2n2, and
(iii) |E(G)| ≤ pn2.

Then there exists G′ ⊆ G with V (G′) = V (G) such that
(i) δ(G′) ≥ δηpn,
(ii) for each pair of disjoint 2cn-sets of vertices A ⊆ X, B ⊆ Y , eG′(A,B) > 0, and
(iii) |E(G′)| ≤ 4δpn2.

We will require the following version of the Lovász Local Lemma (cf. [Spe77, Theorem 1.1])

Theorem 5.5. Let E = {A1, . . . , An} be a collection of events such that each Ai is mutually
independent of E − (Di ∪Ai), for some Di ⊆ E. Let 0 < x1, . . . , xn < 1 be real numbers such
that, for each i ∈ {1, . . . , n},

Pr[Ai] ≤ xi
∏

Aj∈Di

(1− xj).

Then Pr
(⋂n

i=1Ai
)
≥
∏n
i=1(1− xi).

Proof of Lemma 5.4. Assume 1/C � η, δ, c. Let G′ ⊆ G be a graph formed by selecting
each edge of G with probability 2δ. We will show that G′ satisfies the required properties
simultaneously with non-zero probability. For this, we state and prove four claims.

(A1) Pr[|E(G′)| ≤ 4δn2p] ≥ 1− e−2n.

Indeed, we have |E(G)| ≤ n2p, and thus the expected number of edges in G′ is at most
2δ|E(G)| ≤ 2δn2p. Therefore, by Chernoff’s inequality, we have that |E(G′)| ≤ 4δn2p hap-
pens with probability at least 1− exp(−3δn2p/4) ≥ 1− e−2n, where in the last inequality we
used p ≥ C/n and that C is large. This proves (A1).

(A2) With probability at least 1 − e−2n, each pair of disjoint 2cn-sets of vertices A ⊆ X,
B ⊆ Y , eG′(A,B) > 0.

Indeed, for a given pair of disjoint 2cn-sets of vertices A and B, the probability that
eG′(A,B) = 0 is at most (1 − δ)pc2n2 ≤ e−δpc

2n2 . Taking an union bound over the at most(
n
cn

)2 possible choices of A and B, the probability of failure is at most(
n

cn

)2

e−δpc
2n2 ≤ (e/c)2cne−δpc

2n2 ≤ e−2n,

where in the last inequality we used p ≥ C/n and 1/C � η, δ, c. Thus (A2) holds.

(A3) For each v ∈ V (G), Pr[dG′(v) < δηnp] ≤ e−δdG(v)/4.

To see this, let v ∈ V (G) and k = dG(v). First, we note that

(2δk − δηnp)2 ≥ δ2k2. (5.1)

Indeed, after rearranging and simplyfing, we see this is equivalent to k ≥ ηnp, which holds
by assumption.

Note that dG′(v) is a Bernoulli random variable with expectation 2δk. Thus

Pr[dG′(v) < δηnp] = Pr[dG′(v)−E[dG′(v)] < δηnp− 2δk],

and using a Chernoff bound we have

Pr[dG′(v) < δηnp] ≤ exp
(
−(2δk − δηnp)2/(4δk)

)
≤ e−δk/4,
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where we used the inequality (5.1) in the last step. We conclude (A3) is true.

(A4) Pr[δ(G′) ≥ δηnp] ≥ e−n.

To see this, we wish to apply Theorem 5.5. For each v ∈ V (G), let Av be the event that
dG′(v) < δηnp, and let E = {Av : v ∈ V (G)}. Clearly G itself is a “dependency graph” for
the events Av, i.e. for each v ∈ V (G), if Dv := {Aw : w ∈ NG(v)}, then Av is independent of
E − (Dv ∪Av). For each v ∈ V (G), define xv := exp (−δdG(v)/8) ∈ (0, 1).

We verify the condition of the Local Lemma. Given any v ∈ V (G), we have

xv
∏

w∈NG(v)

(1− xw) = e−δdG(v)/8
∏

w∈NG(v)

(1− e−δdG(w)/8).

Now, since δ(G) ≥ ηnp, together with p ≥ C/n, we have, for each w, that 1 − e−δdG(w)/8 ≥
1 − e−δC/8. Since 1/C � δ, we can also suppose that 1 − e−δC/8 ≥ e−δ/8. Plugging this in
the inequality above, we obtain

xv
∏

w∈NG(v)

(1− xw) ≥ e−δdG(v)/8
(
e−δ/8

)dG(v)
= e−δdG(v)/4 ≥ Pr[Av],

where the last inequality follows from (A3).
Thus the assumptions of Theorem 5.5 are satisfied, and all the events Av are simultaneously

avoided (which is equivalent to δ(G′) ≥ δηnp) with probability at least
∏
v∈V (G)(1 − xv).

Again, using that δ(G) ≥ ηnp ≥ ηC we get

Pr[δ(G′) ≥ δηnp] ≥
∏

v∈V (G)

(1− e−δdG(v)/8) ≥
∏

v∈V (G)

(1− e−δCη/8) ≥ e−n,

where in the last inequality we used again 1/C � δ, η.
Now, by (A1), (A2) and (A4), we have that, with probability at least e−n − 2e−2n > 0,

all the required events are true simultaneously. Thus there exists G′ ⊆ G with the desired
characteristics. �

5.3. Proof of the Cycle finder lemmas. Now we can give the proof of Lemma 5.1.

Proof. We begin by defining C, ε, c, b, δ satisfying the hierarchies 1/C � ε� c� b� λ and
1/C � δ � λ. We collect a series of properties which occur with high probability in G. By
Lemma 2.8 we have that with probability 1− o(1),

(P1) G is (c/4, p)-uniform, and
(P2) |E(G)| ≤ pn2.

By Lemma 5.3 and the choices of b, C, with probability 1− o(1) we have that

(P3) each subgraph H ⊆ G with δ(H) ≥ δpn/4 is a (bn, 4)-expander.

Let F be the family of all graphs F on V (G) with at most 5δpn2 edges which are (bn, 4)-
expanders, (bn, n/12)-joined, and do not contain a cycle in V (F ). By Lemma 4.1, for each
graph F ∈ F there is a set BF of boosters of F of size at least 1

16

(|V (F )|
2

)
≥ n2/32. Then

(F , {BF }F∈F ) is a (5δp, 1/16)-boosterable family. Then, by the choice of δ, we can apply
Lemma 4.5 to deduce that with probability 1− o(1) we have that

(P4) for each F ∈ F with F ⊆ G, either F contains a cycle in V (F ) or there are at least
pn2/64 boosters for F in G[V (F )].

From now on, we condition on (P1)–(P4) being true (which happen simultaneously with
probability 1− o(1)), and we show that the desired properties hold.

Now, let H ⊆ G satisfy (i)–(iii) from the statement. By (P1), we get that for every
two sets X,Y of size 2cn each, there are at least 4c2n2p edges between them in G. Since
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ε� c, then (iii) implies that for every two sets A,B of size 2cn each, eH(A,B) > c2n2p. In
particular, H is 2cn-joined and (2cn, 4)-expander as c� b.

We need to find C` ⊆ H for each B log n ≤ ` ≤ |V (H)|. For B log n ≤ ` ≤ (1 − 30c)n,
we use Lemma 2.4 to find a tree T consisting of a path with `− 2 log2 2cn vertices with two
binary trees of depth log2 2cn attached to the endpoints of the path. As H is 2cn-joined,
there is an edge between the set of leaves of T , which implies that C` ⊆ H.

From now on, we will assume that (1 − 30c)|V (H)| ≤ ` ≤ |V (H)|. Since for every two
disjoint sets A,B of size 2cn each, we have eH(A,B) > c2n2p, and together with (P2) and
(ii), we can apply Lemma 5.4 to G′ with 1/4, V (G′), V (G′) in place of η,X, Y , and we get
H ′ ⊆ H with V (H ′) = V (H) such that

δ(H ′) ≥ δnp/4, (5.2)

H ′ is 2cn-joined, and (5.3)

|E(H ′)| ≤ 4δn2p. (5.4)

Using (5.2) and (P3), we deduce

H ′ is a (bn, 4)-expander. (5.5)

Let r = |V (H)| − `. Since ` ≥ (1 − 30c)|V (H)| and c � b, we get that r ≤ bn/10. Then
(5.5) allows us to apply Lemma 2.3, and we deduce that there exists a set X ⊆ V (H) of size
precisely r such that, setting H∗ := H ′ −X,

H∗ is a (bn, 3)-expander on ` vertices. (5.6)

Since H∗ is an induced subgraph of H ′, from (5.3)–(5.4) we get that

H∗ is 2cn-joined, and (5.7)

|E(H∗)| ≤ 4δn2p. (5.8)

We now define a sequence H0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ Hn such that, for each i ≥ 0,
(B1) H∗ ⊆ Hi ⊆ H −X,
(B2) |E(Hi)| ≤ 4δn2p+ i,
(B3) if i > 0, either Hi is Hamiltonian, or Hi has a longer path than Hi−1.

We start with H0 := H∗, which clearly satisfies (B1)–(B3) for i = 0. Suppose now that i ≥ 1
and that we have defined H0 ⊆ · · · ⊆ Hi−1 satisfying (B1)–(B3). If Hi−1 is Hamiltonian,
then setting Hi := Hi−1 satisfies (B1)–(B3) and we are done. Otherwise, we can assume
that Hi−1 is not Hamiltonian. By (B1), together with (5.6)–(5.7), we get that Hi−1 is a
(bn, 3)-expander and 2cn-joined. From (5.8) and (B2), we get that |E(Hi−1)| ≤ 4δn2p+ i ≤
4δn2p+ n ≤ 5δn2p. Therefore, Hi−1 ∈ F . Then (P4) implies that there are at least pn2/64
boosters for Hi−1 in G[V (Hi−1)]. By (iii), at least one of these edges, say e, actually belongs
to H, and thus to H − X. Then, the choice Hi := Hi−1 + e satisfies (B1)–(B3) by the
definition of booster.

Since a path in H −X cannot have length larger than n, we must have that Hn is Hamil-
tonian, meaning that H has a cycle of length |V (Hn)| = |V (H∗)| = `, as required. �

It remains to prove the Bipartite cycle finder lemma, Lemma 5.2. The proof is essentially
the same as the proof of Lemma 5.1, so we shall only comment the proof briefly.

Proof of Lemma 5.2 (sketch). We follow essentially the same steps which were used in the
proof of Lemma 5.1, with the corresponding changes for bipartite graphs which we now
explain. Instead of getting (P3), we use Lemma 5.3 to obtain that each bipartite subgraph
H with δ(H) ≥ δpn/4 is a (bn, 4)-bipartite-expander with high probability. Similarly, we
apply Lemma 4.5 to deduce that for each bipartite subgraph F of G, on classes V1, V2 with
|V1| ≥ |V2|, with at most 5δpn2 edges, which are (bn, 4)-expanders, (bn, n/12)-bipartite-
joined, and do not contain a cycle on 2|V2| edges; there are at least 3pn2/256 bipartite-
boosters for F in G[V (F )], with high probability.
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Now we are given a bipartite H ⊆ G as in the statement, with parts V1, V2. Again, it is
enough to find in H cycles only of even lengths 2` between (1−b/10)2|V2| and 2|V2|. First we
sparsify H using Lemma 5.4, obtaining H ′. With this, deduce that H ′ is bipartite expander,
and using Lemma 2.6 we can remove |V2| − ` vertices from V2 to pass to H∗ which is still a
bipartite expander, with vertex classes V1, V

′
2 , and |V ′2 | = `. Again, we can argue that H∗ is a

bipartite expander, suitably bipartite-joined, and is sparse, and we can do the booster-adding
procedure as before. �

6. Proof of the main theorem

As sketched in the beginning, the key in the proof of both cases, odd and even, consists of
finding a more refined version of the monochromatic subgraphs given by our Stability lemma
(Theorem 3.2); and then applying the Cycle finder lemmas (Lemma 5.1 and Lemma 5.2)
directly in those monochromatic subgraphs. This ‘refining’ step corresponds to the Step 2
outlined in Section 1.1.

We sketch this refinement step. To prove this, we will start from a partition V ′1 , V ′2 as given
by the Stability lemma and then we will reallocate vertices carefully. This will be done first
by removing vertices which have too small degree to one of V ′1 , V ′2 ; and then by reallocating
vertices if they have the ‘wrong colours’ to one of the V ′1 , V ′2 . The key here is that at the end
not more than O(1/p) vertices are removed from V ′1 , V

′
2 , which is shown by tracking carefully

how the vertices are removed.
The next lemma will be used in this ‘fine stability’ analysis. It will allow us to find a

long path between any pair of vertices in different parts of an expander bipartite graph. The
proof follows from tree-embedding considerations in bipartite expanders, and is given for
completeness in Appendix A.2.

Lemma 6.1. Let n,m, d ∈ N satisfy n ≥ 6dm, and d ≥ 7, and suppose that n is odd. Let
G be a bipartite graph with parts V1 and V2 such that |V1|, |V2| ≥ 3n/2, and suppose G is
(m, d)-bipartite-expander and m-joined. Then, for every s1 ∈ V1, s2 ∈ V2, there exists an
(s1, s2)-path in G of length n− 2.

Now we are ready to prove our main result.

Proof of Theorem 1.1. Since part (ii) has already been proven, we only need to show (i). We
begin by choosing constants

1/C � η � δ � β � α� c

so that Theorem 3.2 holds for β and δ, and Lemmas 2.8, 2.9, 5.1, 5.2, 5.3 hold. Let N =
R(Cn)+C/p and let G = G(N, p). Each of the following properties hold with high probability.
(G1) G is (η, p)-uniform,
(G2) every subgraph G′ ⊂ G with δ(G′) ≥ pn/100 is a (cn, 10)-expander,
(G3) every bipartite subgraphG′ ⊂ G with δ(G′) ≥ pn/100 is a (cn, 10)-bipartite-expander,

and
(G4) for every pair of disjoint subsets X,U ⊂ V (G), with |X| ≥ 1000/p and |U | ≥ n/4, we

have
p

2
|U ||X| ≤ e(U,X) ≤ 2p|U ||X|.

By conditioning on those events, we can assume that (G1)–(G4) holds for G from now on.
We separate the proof in two cases depending on the parity of n.

Case 1: n is odd. In this case, R(Cn) = 2n − 1 and thus we can assume N = 2n + C/p.
Suppose that there exists a 2-colouring c : E(G)→ {R,B} such thatG has no monochromatic
cycle of length n. Let GR and GB denote the red graph and blue graph, respectively. By
modifying the partition given by the Stability lemma, we obtain the following ‘medium-fine’
stability structure.

Claim 6.2 (Fine stability, odd case). There exists a partition V (G) = V1 ∪V2 ∪W such that
(S1) |V1|, |V2| ≥ (1− α)n,
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(S2) e(GR[Vi]) ≥ (1− α)pn2/2 for i ∈ {1, 2},
(S3) e(GB[V1, V2]) ≥ (1− α)pn2, and
(S4) for i ∈ {1, 2}, every vertex v ∈ Vi satisfies dR(v, Vi) ≥ pn/100 and dB(v, V3−i) ≥

pn/100.

Proof of the claim. As a first step, we use Theorem 3.2 to find a partition V (G) = V ′1 ∪ V ′2
such that

(i) |V ′1 |, |V ′2 | ≥ (1− β)n,
(ii) e(GR[V ′1 ]), e(GR[V ′2 ]) ≥ (1− β)pn2/2, and
(iii) e(GB[V ′1 , V

′
2 ]) ≥ (1− β)pn2.

For i ∈ {1, 2}, let Xi be the set of vertices in x ∈ V ′i such that dB(v, V ′i ) ≥ pn/100, and let
Yi be the set of vertices x ∈ V ′i such that dR(v, V ′3−i) ≥ pn/100. Thus Xi∪Yi are the vertices
in V ′i adjacent to many edges in the ‘wrong colour’.

For each i we have |V ′i | ≤ 2n + C/p − |V ′3−i| ≤ (1 + β)n + C/p ≤ (1 + 2β)n. Since G is
(η, p)-uniform, we have e(G[V ′i ]) ≤ (1 + η)p

(|V ′i |
2

)
≤ (1 + η)p(1 + β)2n2/2. Hence, we have

pn|Xi|
100

≤
∑
x∈Xi

dB(v, Vi) ≤ 2e(GB[V ′i ]) = 2(e(G)− eR(G))

≤ 2
(
(1 + η)p(1 + β)2n2/2− (1− β)pn2/2

)
= pn2

(
(1 + η)(1 + β)2 − (1− β)

)
≤ pn2((1 + β)(1 + 2β + β2)− (1− β)) ≤ 5βpn2,

where in the last line we used η � β � 1. We deduce that |Xi| ≤ 500βn. Very similar
calculations can be used to get that |Yi| ≤ 500βn.

Let V ′1,1 = V ′1 \ (X1 ∪ Y1) and V ′2,1 = V ′2 \ (X2 ∪ Y2). For i ≥ 1, if there exists a vertex
vi ∈ V ′1,i ∪ V ′2,i such that d(vi, V1,i) ≤ pn/25 or d(vi, V2,i) ≤ pn/25, then we update V1,i+1 =

V1,i\{vi} and V2,i+1 = V2,i\{vi}. If no such vertex exists, then we stop this process. We claim
that this process stops at some time 1 ≤ j∗ ≤ 2000/p. Otherwise, suppose j∗ ≥ d2000

p e = l,
let Z = {v1, . . . , vl} denote the set of vertices we have removed up to step l, and let Z ′ ⊂ Z
be the set of those vertices having less than pn/25 neighbours in V1,l. If |Z ′| ≥ 1000/p, then
by property (G4) we have

pn|Z ′|
25

≥ e(Z, V1,l) ≥
p|Z ′||V1,l|

2
≥ pn|Z ′|

8
,

a contradiction. Similarly, as |Z \ Z ′| ≥ 1000/p, then by (G4) we have

e(Z \ Z ′, V2,l) ≥
p|Z \ Z ′||V2,l|

2
≥ pn|Z \ Z ′|

4
,

which implies that exists a vertex z ∈ Z having at least pn/25 neighbours in both V1,l and
V2,l, contradiction.

Let V1 = V1,j∗ , V2 = V2,j∗ , and W = V (G) \ (V1 ∪ V2). Since j∗ ≤ 2000/p and |Xi ∪ Yi| ≤
1000βn � αn, we clearly have (S1), (S2), and (S3). We now check the degree conditions.
For i ∈ {1, 2} and v ∈ Vi, by definition we have

dR(v, Vi) ≥ d(v, Vi)−
pn

100
≥ pn

25
− pn

100
≥ pn

100

and
dB(v, V3−i) ≥ d(v, V3−i)−

pn

100
≥ pn

25
− pn

100
≥ pn

100
,

proving (S4). This finishes the proof of the claim. �

Now we show that GB[V1, V2] has good expansion properties.

Claim 6.3. GB[V1, V2] is (cn, 10)-bipartite-expander and 2
√
αn-bipartite-joined.
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Proof of the claim. The first property follows from Lemma 5.3 as δ(GB[V1, V2]) ≥ pn/100.
Now, suppose that GB[V1, V2] is not 2

√
αn-joined, and let X ⊂ V1 and Y ⊂ V2 be subsets of

size 2
√
αn with no blue edges in between. Since G is (η, p)-uniform, we have

e(GR[X,Y ]) ≥ (1− η)p|X||Y | ≥ (1− η)4αpn2,

which is a contradiction. This proves the claim. �

We now want use Lemma 6.1 to refine the partition further and obtain a very fine stability,
as sketched before. Let B ⊂W denote the set of vertices having less than pn/25 neighbours
either in V1 or V2. As in the proof of Claim 6.2, using (G4) we can deduce that |B| < 2000/p.
Let W0 = W \ B be the set of vertices having less than pn/100 in both V1 and V2, and, for
each i ∈ {1, 2}, let Wi ⊂ W \ (B ∪ W0) be the set of vertices having less than pn/100
blue neighbours in Vi. Suppose that exists a vertex w ∈ W \ (B ∪W0 ∪W1 ∪W2), which
means that w has at least pn/100 blue neighbours in both V1 and V2. Since GB[V1, V2]
is (cn, 10)-bipartite-expander and 2

√
αn-bipartite-joined, we can use Lemma 6.1 to find a

NB(v, V1), NB(v, V2)-path of length n− 1, which together with w completes a cycle of length
n, a contradiction. Therefore, there exists i ∈ {1, 2} such that dB(w, Vi) < pn/100 and thus
w ∈W0 ∪W1 ∪W2, again a contradiction. We conclude that W = B ∪W0 ∪W1 ∪W2.

Let W0 = W 1
0 ∪W 2

0 be an arbitrary partition, and let V ∗1 = V1 ∪W 1
0 ∪W2 and V ∗2 =

V2 ∪W 2
0 ∪W1. Then, for every v ∈ V ∗i \ Vi we have

dR(v, V ∗i ) ≥ dR(v, Vi) ≥
pn

25
− pn

100
≥ pn

100
.

Therefore, we have found a partition V (G) = V ∗1 ∪ V ∗2 ∪B such that
(i) |B| ≤ 2000/p,
(ii) e(GR[V ∗i ]) ≥ (1− α)pn2/2 for i ∈ {1, 2}.
(iii) For i ∈ {1, 2}, every vertex v ∈ V ∗i satisfies dR(v, V ∗i ) ≥ pn/100.

Since C is large enough and |B| ≤ 2000/p, we have that one of V ∗1 or V ∗2 has size at least
(N − |B|)/2 ≥ n, we can assume without loss of generality that it is |V ∗1 |. Then Lemma 5.1
finds a cycle of length n in GR[V ∗i ]. This finishes the proof for odd n.

Case 2: n is even. Let n be even. In this case, R(Cn) = 3n/2 − 1, so we can assume that
N = 3n/2 + C/p. Let G = G(N, p). Suppose that exists a 2-colouring of E(G) → {R,B}
without a monochromatic cycle of length n. In the same way as in the odd case, we can prove
the following refined stability result.

Claim 6.4 (Fine stability, even case). There exists a partition V (G) = V1∪V2∪W such that
(S’1) |V1| ≥ (1− α)n.
(S’2) |V2| ≥ (1− α)n/2.
(S’3) e(GR[V1]) ≥ (1− α)pn2/2.
(S’4) e(GB[V1, V2]) ≥ (1− α)pn2/2.
(S’5) For i ∈ {1, 2}, every vertex v ∈ Vi satisfies dR(v, Vi) ≥ pn/100 and dB(v, V3−i) ≥

pn/100. �

We now refine this structure further. Let B ⊂ W be the set of vertices having less than
pn/25 neighbours in either V1 or V2. The same argument as before gives that |B| < 2000/p.
Let W2 ⊂W \B denote the set of vertices having at least pn/100 blue neighbours in V1, and
let W1 = W \ (B ∪W2) be the set of vertices having less than pn/100 neighbours in both V1.
Let V ∗1 = V1 ∪W1 and V ∗2 = V2 ∪W2. Since N = 3n/2 + C/p, then either |V ∗1 | ≥ n+ C/2p
or |V ∗2 | ≥ n/2 + C/2p holds. We split the proof into two cases.

Case 2.1: |V ∗1 | ≥ n+ C/2p. Using (S’5) and the definition of W1 we have

dR(v, V ∗1 ) ≥ dR(v, V1) ≥ pn/25− pn/100 ≥ pn/100

for every v ∈ V ∗1 . Moreover, by (S’3) we have e(GR[V ∗1 ]) ≥ (1−α)pn2/2. Therefore, we can
use Lemma 5.1 to find a cycle of length n in GR[V ∗1 ].
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Case 2.2: |V ∗2 | ≥ n/2+C/4p. Because of (S’5) and the definition ofW2, every vertex v ∈ V ∗2
satisfies

dB(v, V1) ≥ pn/25− pn/100 ≥ pn/100,

and every vertex v ∈ V1 satisfies dB(v, V ∗2 ) ≥ dB(v, V2) ≥ pn/25. Then, because of (S’5), we
can use Lemma 5.2 to find a cycle of length n in GB[V1, V

∗
2 ]. This finishes all cases. �
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Appendix A. Extendability in bipartite graphs

We review tree embeddings in bipartite expander graphs. For this, we use the notion
of ‘extendability’, as introduced by Glebov, Johanssen and Krivelevich [Gle13] and further
developed by Montgomery [Mon19].

A.1. Bipartite extendability. We propose the following natural definition, which is a bi-
partite version of ‘extendability’ (cf. [Mon19, Definition 3.1]).

Definition A.1. Let d ≥ 3 and m ≥ 1. Let G be a bipartite graph with parts V1 and V2,
and let S ⊂ G be a subgraph. We say that S is (d,m)-bipartite-extendable if S has maximum
degree at most d and

|N(U) \ V (S)| ≥ (d− 1)|U | −
∑

x∈U∩V (S)

(dS(x)− 1),

for all U ⊂ Vi with |U | ≤ 2m and i ∈ {1, 2}.

The following lemma allows us to extend bipartite-extendable subgraphs by a single edge
(cf. [Gle13, Lemma 5.2.6]).

Lemma A.2. Let d ≥ 3 and m ≥ 1. Let G be a bipartite graph with parts V1 and V2, and
let S ⊂ G be a (d,m)-bipartite-extendable subgraph of G. Suppose that every i ∈ {1, 2}, and
every subset U ⊂ Vi with m ≤ |U | ≤ 2m satisfies

|N(U)| ≥ |V (S) ∩ Vi|+ 2dm+ 1.

Then, for every vertex s ∈ V (S) with dS(s) ≤ d− 1, there exists a vertex y ∈ NG(s) \ V (S)
such that the graph S + sy is (d,m)-bipartite-extendable.

Proof. For i ∈ {1, 2}, a subset X ⊂ Vi, and a subgraph H ⊂ G, we define

D(X;H) = |N(X) \ V (H)| − (d− 1)|X|+
∑

x∈X∩V (H)

(dH(x)− 1).

We observe that a subgraph H ⊂ G is (d,m)-bipartite-extendable if for all i ∈ {V1, V2} and
every X ⊂ Vi we have D(X;H) ≥ 0.

Claim A.3. For i ∈ {1, 2}, suppose that X ⊂ Vi satisfies |X| ≤ 2m and D(X;S) = 0. Then
|X| ≤ m.

Proof of the claim. Suppose that m < |X| ≤ 2m. Then by assumption we have

|N(X) \ V (S)| ≥ 2dm+ 1 ≥ d|X|+ 1 > (d− 1)|X| −
∑

x∈X∩V (S)

(dS(x)− 1),

contradicting that D(X;S) = 0. This proves the claim. �

Claim A.4. For i ∈ {1, 2}, suppose that X,Y ⊂ Vi satisfy |X|, |Y | ≤ 2m and D(X;S) =
D(Y ;S) = 0. Then D(X ∪ Y ;S) = 0.

Proof of the claim. Since G is bipartite, then we have that

|N(X ∪ Y ) \ V (S)| = |N(X) \ V (S)|+ |N(Y ) \ V (S)| − |N(X ∩ Y ) \ V (S)|.
Hence it is easy to check that

D(X ∪ Y ;S) = D(X;S) +D(Y ;S)−D(X ∩ Y ;S) = −D(X ∩ Y ;S).

Therefore, as S is (d,m)-extendable, we have D(X ∩Y ;S) ≥ 0 and whence D(X ∪Y ;S) ≤ 0.
However, by Claim A.3 we deduce that |X ∪ Y | ≤ 2m, and then, as S is (d,m)-extendable,
we have D(X ∪ Y ;S) ≥ 0 which implies D(X ∪ Y ;S) = 0. The claim has been proven. �

https://doi.org/10.1016/0012-365X(77)90044-9
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For a contradiction, let us suppose that s ∈ V1 and that for every y ∈ NG(s) \ V (S),
the graph S + sy is not (d,m)-bipartite-extendable. Therefore, for every y ∈ NG(s) \ V (S),
there exists i ∈ {1, 2} and a set Xy ⊆ Vi with |Xy| ≤ 2m such that D(Xy;S + sy) < 0.
Now note that if X ⊆ V2, then since N(X) ⊆ V1 and NG(s) ⊆ V2, we have that for any
y ∈ NG(s) \ V (S) it actually holds that D(X;S + sy) ≥ D(X;S) ≥ 0. This implies that for
every y ∈ NG(s)\V (S), we must have Xy ⊆ V1. Therefore, for every y ∈ NG(s)\V (S), there
exists a set Xy ⊂ V1, with |Xy| ≤ 2m, such that D(Xy;S + sy) < 0.

Note that
D(X;S + xy) = D(X;S)− 1[y ∈ NG(X)] + 1[s ∈ X] (A.1)

holds for allX ⊂ V1. Therefore, for all y ∈ NG(s)\V (S), in order to satisfyD(Xy;S+sy) < 0,
we must have that D(Xy;S) = 0, y ∈ N(Xy), and s 6∈ Xy.

Let X∗ =
⋃
y∈NG(s)\V (S)Xy. Using Claims A.3 and A.4, we deduce that

(i) NG(s) \ V (S) ⊂ NG(X∗),
(ii) s 6∈ X∗, and
(iii) D(X∗;S) = 0 and |X∗| ≤ m.

Observe that (i) implies N({s} ∪X∗ \ V (S)) = N(X∗ \ V (S)). Therefore, as dS(s) ≤ d− 1,
we have

D({s} ∪X∗;S) = D(X∗;S)− (d− 1) + (dS(s)− 1) ≤ −(d− 1) + (d− 2) < 0. (A.2)

However, as S is (d,m)-bipartite-extendable and |{s}∪X∗| ≤ m+1, we haveD({s}∪X∗;S) ≥
0, which contradicts (A.2). �

Now we use Lemma A.2 iteratively to extend a bipartite-extendable subgraph by attaching
a tree while retaining bipartite-extendability (cf. [Mon19, Corollary 3.7]).

Corollary A.5. Let d ≥ 3 and m ≥ 1, and let G be a bipartite graph with parts V1 and V2.
Let S ⊆ G be a (d,m)-bipartite-extendable subgraph, and let T be a tree with ∆(T ) ≤ d and
bipartition classes D1 and D2. Suppose that G is m-bipartite-joined and that, for i ∈ {1, 2},
we have

|V (S) ∩ Vi|+ |Di|+ (2d+ 1)m+ 1 ≤ |Vi|. (A.3)
Then, for each i ∈ {1, 2}, for every si ∈ S ∩ Vi with dS(si) ≤ d − 1 and ti ∈ Di, there
exists a copy Ri of T such that ti is copied to si, V (Ri) ∩ V (S) = {si}, and Ri ∪ S is
(d,m)-bipartite-extendable.

Proof. Let {ti} = T0 ⊂ T1 ⊂ · · · ⊂ Tl = T be a sequence of subtrees, where Tj is obtained
from Tj−1 by adding a leaf. Note that since G is m-bipartite-joined, for any X ⊂ Vi with
|X| ≥ m, the assumption (A.3) implies

N(X) ≥ |Vi| −m ≥ |V (S) ∩ Vi|+ |Di|+ 2dm+ 1. (A.4)

Let si ∈ Vi be a vertex with dS(si) ≤ d−1 and map ti to si. This gives a copy R0
i of T0, with

V (R0
i ) ∩ V (S) = {si}, and ti copied to si, and R0

i ∪ S = S is (d,m)-bipartite-extendable.
Now, for some 0 ≤ j < l, suppose that we have found a copy Rji of Tj so that S ∪ Rji is

(d,m)-bipartite-extendable, V (Rji ) ∩ V (S) = {si}, and ti is copied to si. Since ∆(T ) ≤ d

and because of (A.4), we may use Lemma A.2 to extend the copy of Rji to a copy of Rj+1
i by

adding the leaf that forms Tj+1, and copying it to a yet unused vertex. Thus we find a copy
Rj+1
i of Tj+1 so that S ∪Rj+1

i is (d,m)-bipartite-extendable, V (Rj+1
i )∩ V (S) = {si}, and ti

is copied to si. Then Rli = Ri is the desired copy of T . �

A.2. Proof of the lemmas. Now we can prove Lemma 6.1 and Lemma 2.6.

Proof of Lemma 6.1. Let I denote the graph with vertices s1 and s2 and no edges. An easy
case analysis, using that G is a (m, d)-bipartite-expander, shows that I is ((d − 1)/2,m)-
bipartite-extendable.

Recall that n is odd. Let x = (n− 3)/2− dlog2me. We let T ∗ be a broom tree, consisting
of a binary tree B of depth dlog2me whose root vertex is attached to a path P of length x.
Let t ∈ V (T ∗) be the endpoint of P which is not attached to B. Note that
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(T1) ∆(T ∗) ≤ 3 ≤ (d− 1)/2,
(T2) T ∗ has bipartition classes D1, D2 satisfying |D1|, |D2| ≤ dx/2e+ 2dlog2me,
(T3) t is at distance x+ dlog2me = (n− 3)/2 from any other leaf of T ∗,
(T4) T ∗ has at least m leaves distinct from t.

We want to use Corollary A.5 to find a copy T1 of T ∗ where t is copied to s1, V (T1)∩I = {s1}
and such that T1 ∪ I is ((d− 1)/2,m)-bipartite-extendable. We check that the assumptions
hold. We have I is ((d − 1)/2,m)-bipartite-extendable, dI(s1) = 0, and (T1); so it is only
necessary to check that (A.3) holds, but this follows from (T2) since

|V (I) ∩ Vi|+ |Di|+ dm+ 1 ≤ 1 + dx/2e+ 2dlog2me+ dm+ 1 ≤ 3n/2 ≤ |Vi|.
Thus, the desired copy T1 of T ∗ exists. We repeat the argument, now finding a copy T2 of
T ∗ where t is copied to s2 and V (T2) ∩ (V (T1) ∪ V (I)) = {s2}, the necessary conditions of
Corollary A.5 are checked by similar calculations.

For each i ∈ {1, 2}, let Qi ⊆ V (G) be the set of leaves in T1 which are not si. We must
have that Q1, Q2 are each contained in a different part of the bipartition {V1, V2}. By (T4),
we have |Q1|, |Q2| ≥ m; and since G is m-bipartite-joined there must be an edge q1q2 between
q1 ∈ Q1 and q2 ∈ Q2. By (T3), for each i ∈ {1, 2} there is a path Pi of length (n − 3)/2
between si and qi. Their concatenation yields a path of length 2(n−3)/2+1 = n−2 between
s1 and s2 in G, as required. �

Proof of Lemma 2.6. Let s ∈ V2 be an arbitrary vertex. Note that S0 = {s} is a (d + 2, k)-
bipartite-extendable subgraph of G. Indeed, ∆(S0) = 0, and for each i ∈ {1, 2} and U ⊆ Vi
with size at most k, we have |N(U) \ V (S0)| ≥ |N(U)| − 1 ≥ (2d + 5)|U | − 1, where the
last inequality follows since G is (2k, 2d + 5)-bipartite-expander. Then |N(U) \ V (S0)| ≥
(2d+ 5)|U | − 1 ≥ (d+ 1)|U |+ 1 ≥ (d+ 1)|U | −

∑
x∈U∩V (S0)(dS0(x)− 1), as required.

For each 0 ≤ t < 2r, suppose we have a path St ⊆ G of length t, starting at s, which
is a (d + 2, k)-bipartite-extendable subgraph. We construct a path St+1 which extends St,
still has s as an endpoint, and is a (d + 2, k)-bipartite-extendable subgraph. We do this by
invoking Lemma A.2. We need to show that for each i ∈ {1, 2}, and every subset U ⊆ Vi
with k ≤ |U | ≤ 2k satisfies |N(U)| ≥ |V (St) ∩ Vi| + 2(d + 2)k + 1. Since t < 2r, we have
|V (St) ∩ Vi| < r ≤ k; and together with the fact that G is a (2k, 2d + 5)-bipartite-expander
we indeed have |N(U)| ≥ (2d+ 5)|U | ≥ (2d+ 5)k ≥ |V (St)∩ Vi|+ 2(d+ 2)k+ 1, as required.
Then there exists a vertex y /∈ V (St) such that St+1 = St + y is a path of length t which is
a (d+ 2, k)-bipartite-extendable subgraph. At the end of this process, we find a path S2r of
length 2r, which starts at s ∈ V2, which is a (d+ 2, k)-bipartite-extendable subgraph of G.

Let X = V (S2r) ∩ V2, note that |X| = r. We claim that X has the required properties,
i.e. G − X is a (2k, d)-bipartite-expander. Indeed, let i ∈ {1, 2} and let U ⊆ Vi have size
at most 2k. To conclude, we need to show that |NG−X(U)| ≥ d|U |. Using that S2r is a
(d+ 2, k)-bipartite-extendable subgraph, we deduce that

|NG−X(U)| ≥ |NG(U) \ V (S2r)| ≥ (d+ 1)|U | −
∑

x∈U∩V (S2r)

(dS2r(x) − 1) ≥ (d+ 1)|U | − |U |,

where in the last inequality we used dS2r(x) ≤ 2, since S2r is a path. �
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